
UCRL-SM-212121

sundialsTB, a Matlab Interface to
SUNDIALS

R. Serban

May 10, 2005

Disclaimer

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any
specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the University of California. The views and opinions of authors expressed herein
do not necessarily state or reflect those of the United States Government or the University of California,
and shall not be used for advertising or product endorsement purposes.

 This work was performed under the auspices of the U.S. Department of Energy by University of
California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

sundialsTB, a matlab Interface to sundials

Radu Serban

Center for Applied Scientific Computing

Lawrence Livermore National Laboratory

May 2005

UCRL-SM-000000

Contents

1 Introduction 1

1.1 Notes . 1
1.2 Requirements . 1
1.3 Installation . 1
1.4 Links . 2

2 matlab Interface to cvodes 3

2.1 Interface functions . 4
2.2 Function types . 26

3 matlab Interface to kinsol 38

3.1 Interface functions . 39
3.2 Function types . 45

4 Supporting modules 50

4.1 nvector functions . 51
4.2 Parallel utilities . 57

References 66

1 Introduction

sundials [2], SUite of Nonlinear and DIfferential/ALgebraic equation Solvers, is a family of software
tools for integration of ODE and DAE initial value problems and for the solution of nonlinear systems
of equations. It consists of cvode, ida, and kinsol, and variants of these with sensitivity analysis
capabilities.

sundialsTB is a collection of matlab functions which provide interfaces to the sundials solvers.
The core of each matlab interface in sundialsTB is a single mex file which interfaces to the

various user-callable functions for that solver. However, this mex file should not be called directly,
but rather through the user-callable functions provided for each matlab interface.

A major design principle for sundialsTB was to provide an interface that is, as much as possible,
equally familiar to users of both the sundials codes and matlab. Moreover, we tried to keep
the number of user-callable functions to a minimum. For example, the cvodes matlab interface
contains only 9 such functions, 3 of which interface solely to the adjoint sensitivity module in
cvodes. In tune with the matlab odeset function, optional solver inputs in sundialsTB are
specified through a single function (CvodeSetOptions for cvodes). However, unlike the ODE
solvers in matlab, we have kept the more flexible sundials model in which a separate “solve”
function (CVodeSolve for cvodes) must be called to return the solution at a desired output time.
Solver statistics, as well as optional outputs (such as solution and solution derivatives at additional
times) can be obtained at any time with calls to separate functions (CVodeGetStats and CVodeGet

for cvodes).
This document provides a complete documentation for the sundialsTB functions. For additional

details on the methods and underlying sundials software consult also the coresponding sundials

user guides [3, 1].

1.1 Notes

The version numbers for the matlab interfaces correspond to those of the corresponding sundials

solver with wich the interface is compatible.

1.2 Requirements

Each interface module in sundialsTB requires the appropriate version of the corresponding sun-

dials solver. For parallel support, sundialsTB depends on mpiTB with lam v > 7.1.1 (for MPI-2
spawning feature).

1.3 Installation

1. Install the appropriate version of the sundials solver(s).

2. Modify Makefile (SUNDIALS location) in the mex directory and compile

3. Optionally, for parallel support, install and configure LAM (local copy, since typical installa-
tions only install static libraries) and mpiTB

4. Add the following paths to your matlab startup.m script:

• sundialsTB/cvodes and sundialsTB/mex/cvm for cvodes

• sundialsTB/kinsol and sundialsTB/mex/kim for kinsol

• sundialsTB/nvector and sundialsTB/mex/nvm for nvector operations

• sundialsTB/putils for mpirun function

5. In matlab, try:

• help cvodes

• help kinsol

1

• help nvector

• help putils

1.4 Links

The required software packages can be obtained from the following addresses.
sundials http://www.llnl.gov/CASC/sundials

mpiTB http://atc.ugr.es/javier-bin/mpitb eng

lam http://www.lam-mpi.org/

2

2 matlab Interface to cvodes

The matlab interface to cvodes provides access to all functionality of the cvodes solver, including
IVP simulation and sensitvity analysis (both forward and adjoint).

The interface consists of 9 user-callable functions. The user must provide several required and
optional user-supplied functions which define the problem to be solved. The user-callable functions
and the types of user-supplied functions are listed in Table 1 and fully documented later in this
section. For more in depth details, consult also the cvodes user guide [3].

To illustrate the use of the cvodes matlab interface, several example problems are provided
with sundialsTB, both for serial and parallel computations. Most of them are matlab translations
of example problems provided with cvodes.

Table 1: cvodes matlab interface functions

F
u
n
ct
io
n
s

CVodeSetOptions creates an options structure for cvodes.
CVodeMalloc allocates and initializes memory for cvodes.

CVodeMallocB allocates and initializes backward memory for cvodes.
CVode integrates the ODE.

CVodeB integrates the backward ODE.
CVodeGetStats returns statistics for the cvodes solver.

CVodeGetStatsB returns statistics for the backward cvodes solver.
CVodeGet extracts data from cvodes memory.
CVodeFree deallocates memory for the cvodes solver.

CVodeMonitor sample monitoring function.

F
u
n
ct
io
n
ty
p
es

CVRhsFn RHS function
CVRootFn root-finding function

CVQuadRhsFn quadrature RHS function
CVDenseJacFn dense Jacobian function
CVBandJacFn banded Jacobian function

CVJactimesVecFn Jacobian times vector function
CVPrecSetupFn preconditioner setup function
CVPrecSolveFn preconditioner solve function

CVGlocalFn RHS approximation function (BBDPre)
CVGcommFn communication function (BBDPre)
CVSensRhsFn sensitivity RHS function
CVSensRhs1Fn sensitivity RHS function (single)
CVMonitorFn monitoring function

3

2.1 Interface functions

CVodeSetOptions

Purpose

CVodeSetOptions creates an options structure for CVODES.

Synopsis

function options = CVodeSetOptions(varargin)

Description

CVodeSetOptions creates an options structure for CVODES.

Usage: OPTIONS = CVodeSetOptions(’NAME1’,VALUE1,’NAME2’,VALUE2,...)

OPTIONS = CVodeSetOptions(OLDOPTIONS,’NAME1’,VALUE1,...)

OPTIONS = CVodeSetOptions(OLDOPTIONS,NEWOPTIONS)

OPTIONS = CVodeSetOptions(’NAME1’,VALUE1,’NAME2’,VALUE2,...) creates

a CVODES options structure OPTIONS in which the named properties have

the specified values. Any unspecified properties have default values.

It is sufficient to type only the leading characters that uniquely

identify the property. Case is ignored for property names.

OPTIONS = CVodeSetOptions(OLDOPTIONS,’NAME1’,VALUE1,...) alters an

existing options structure OLDOPTIONS.

OPTIONS = CVodeSetOptions(OLDOPTIONS,NEWOPTIONS) combines an existing

options structure OLDOPTIONS with a new options structure NEWOPTIONS.

Any new properties overwrite corresponding old properties.

CVodeSetOptions with no input arguments displays all property names

and their possible values.

CVodeSetOptions properties

(See also the CVODES User Guide)

Adams - Use Adams linear multistep method [on | off]

This property specifies whether the Adams method is to be used instead

of the default Backward Differentiation Formulas (BDF) method.

The Adams method is recommended for non-stiff problems, while BDF is

recommended for stiff problems.

NonlinearSolver - Type of nonlinear solver used [Functional | Newton]

The ’Functional’ nonlinear solver is best suited for non-stiff

problems, in conjunction with the ’Adams’ linear multistep method,

while ’Newton’ is better suited for stiff problems, using the ’BDF’

method.

RelTol - Relative tolerance [positive scalar | 1e-4]

RelTol defaults to 1e-4 and is applied to all components of the solution

vector. See AbsTol.

AbsTol - Absolute tolerance [positive scalar or vector | 1e-6]

4

The relative and absolute tolerances define a vector of error weights

with components

ewt(i) = 1/(RelTol*|y(i)| + AbsTol) if AbsTol is a scalar

ewt(i) = 1/(RelTol*|y(i)| + AbsTol(i)) if AbsTol is a vector

This vector is used in all error and convergence tests, which

use a weighted RMS norm on all error-like vectors v:

WRMSnorm(v) = sqrt((1/N) sum(i=1..N) (v(i)*ewt(i))^2),

where N is the problem dimension.

MaxNumSteps - Maximum number of steps [positive integer | 500]

CVode will return with an error after taking MaxNumSteps internal steps

in its attempt to reach the next output time.

InitialStep - Suggested initial stepsize [positive scalar]

By default, CVode estimates an initial stepsize h0 at the initial time

t0 as the solution of

WRMSnorm(h0^2 ydd / 2) = 1

where ydd is an estimated second derivative of y(t0).

MaxStep - Maximum stepsize [positive scalar | inf]

Defines an upper bound on the integration step size.

MinStep - Minimum stepsize [positive scalar | 0.0]

Defines a lower bound on the integration step size.

MaxOrder - Maximum method order [1-12 for Adams, 1-5 for BDF | 5]

Defines an upper bound on the linear multistep method order.

StopTime - Stopping time [scalar]

Defines a value for the independent variable past which the solution

is not to proceed.

RootsFn - Rootfinding function [function]

To detect events (roots of functions), set this property to the event

function. See CVRootFn.

NumRoots - Number of root functions [integer | 0]

Set NumRoots to the number of functions for which roots are monitored.

If NumRoots is 0, rootfinding is disabled.

StabilityLimDet - Stability limit detection algorithm [on | off]

Flag used to turn on or off the stability limit detection algorithm

within CVODES. This property can be used only with the BDF method.

In this case, if the order is 3 or greater and if the stability limit

is detected, the method order is reduced.

LinearSolver - Linear solver type [Diag | Band | GMRES | BiCGStab | Dense]

Specifies the type of linear solver to be used for the Newton nonlinear

solver (see NonlinearSolver). Valid choices are: Dense (direct, dense

Jacobian), Band (direct, banded Jacobian), Diag (direct, diagonal Jacobian),

GMRES (iterative, scaled preconditioned GMRES), BiCGStab (iterative, scaled

preconditioned stabilized BiCG). The GMRES and BiCGStab are matrix-free

linear solvers.

JacobianFn - Jacobian function [function]

This propeerty is overloaded. Set this value to a function that returns

Jacobian information consistent with the linear solver used (see Linsolver).

If not specified, CVODES uses difference quotient approximations.

For the Dense linear solver, JacobianFn must be of type CVDenseJacFn and

must return a dense Jacobian matrix. For the Band linear solver, JacobianFn

must be of type CVBandJacFn and must return a banded Jacobian matrix.

For the iterative linear solvers, GMRES and BiCGStab, JacobianFn must be

of type CVJacTimesVecFn and must return a Jacobian-vector product. This

property is not used for the Diag linear solver.

5

PrecType - Preconditioner type [Left | Right | Both | None]

Specifies the type of user preconditioning to be done if an iterative linear

solver, GMRES or BiCGStab, is used (see LinSolver). PrecType must be one of

the following: ’None’, ’Left’, ’Right’, or ’Both’, corresponding to no

preconditioning, left preconditioning only, right preconditioning only, and

both left and right preconditioning, respectively.

PrecModule - Preconditioner module [BandPre | BBDPre | UserDefined]

If the PrecModule = ’UserDefined’, then the user must provide at least a

preconditioner solve function (see PrecSolveFn)

CVODES provides the following two general-purpose preconditioner modules:

BandPre provide a band matrix preconditioner based on difference quotients

of the ODE right-hand side function. The user must specify the lower and

upper half-bandwidths through the properties LowerBwidth and UpperBwidth,

respectively.

BBDPre can be only used with parallel vectors. It provide a preconditioner

matrix that is block-diagonal with banded blocks. The blocking corresponds

to the distribution of the dependent variable vector y among the processors.

Each preconditioner block is generated from the Jacobian of the local part

(on the current processor) of a given function g(t,y) approximating

f(t,y) (see GlocalFn). The blocks are generated by a difference quotient

scheme on each processor independently. This scheme utilizes an assumed

banded structure with given half-bandwidths, mldq and mudq (specified through

LowerBwidthDQ and UpperBwidthDQ, respectively). However, the banded Jacobian

block kept by the scheme has half-bandwiths ml and mu (specified through

LowerBwidth and UpperBwidth), which may be smaller.

PrecSetupFn - Preconditioner setup function [function]

If PrecType is not ’None’, PrecSetupFn specifies an optional function which,

together with PrecSolve, defines left and right preconditioner matrices

(either of which can be trivial), such that the product P1*P2 is an

aproximation to the Newton matrix. PrecSetupFn must be of type CVPrecSetupFn.

PrecSolveFn - Preconditioner solve function [function]

If PrecType is not ’None’, PrecSolveFn specifies a required function which

must solve a linear system Pz = r, for given r. PrecSolveFn must be of type

CVPrecSolveFn.

KrylovMaxDim - Maximum number of Krylov subspace vectors [integer | 5]

Specifies the maximum number of vectors in the Krylov subspace. This property

is used only if an iterative linear solver, GMRES or BiCGStab, is used (see

LinSolver).

GramSchmidtType - Gram-Schmidt orthogonalization [Classical | Modified]

Specifies the type of Gram-Schmidt orthogonalization (classical or modified).

This property is used only if the GMRES linear solver is used (see LinSolver).

GlocalFn - Local right-hand side approximation funciton for BBDPre [function]

If PrecModule is BBDPre, GlocalFn specifies a required function that

evaluates a local approximation to the ODE right-hand side. GlocalFn must

be of type CVGlocFn.

GcommFn - Inter-process communication function for BBDPre [function]

If PrecModule is BBDPre, GcommFn specifies an optional function

to perform any inter-process communication required for the evaluation of

GlocalFn. GcommFn must be of type CVGcommFn.

LowerBwidth - Jacobian/preconditioner lower bandwidth [integer | 0]

This property is overloaded. If the Band linear solver is used (see LinSolver),

it specifies the lower half-bandwidth of the band Jacobian approximation.

If one of the two iterative linear solvers, GMRES or BiCGStab, is used

(see LinSolver) and if the BBDPre preconditioner module in CVODES is used

6

(see PrecModule), it specifies the lower half-bandwidth of the retained

banded approximation of the local Jacobian block. If the BandPre preconditioner

module (see PrecModule) is used, it specifies the lower half-bandwidth of

the band preconditioner matrix. LowerBwidth defaults to 0 (no sub-diagonals).

UpperBwidth - Jacobian/preconditioner upper bandwidth [integer | 0]

This property is overloaded. If the Band linear solver is used (see LinSolver),

it specifies the upper half-bandwidth of the band Jacobian approximation.

If one of the two iterative linear solvers, GMRES or BiCGStab, is used

(see LinSolver) and if the BBDPre preconditioner module in CVODES is used

(see PrecModule), it specifies the upper half-bandwidth of the retained

banded approximation of the local Jacobian block. If the BandPre

preconditioner module (see PrecModule) is used, it specifies the upper

half-bandwidth of the band preconditioner matrix. UpperBwidth defaults to

0 (no super-diagonals).

LowerBwidthDQ - BBDPre preconditioner DQ lower bandwidth [integer | 0]

Specifies the lower half-bandwidth used in the difference-quotient Jacobian

approximation for the BBDPre preconditioner (see PrecModule).

UpperBwidthDQ - BBDPre preconditioner DQ upper bandwidth [integer | 0]

Specifies the upper half-bandwidth used in the difference-quotient Jacobian

approximation for the BBDPre preconditioner (see PrecModule).

Quadratures - Quadrature integration [on | off]

Enables or disables quadrature integration.

QuadRhsFn - Quadrature right-hand side function [function]

Specifies the user-supplied function to evaluate the integrand for

quadrature computations. See CVQuadRhsfn.

QuadInitCond - Initial conditions for quadrature variables [vector]

Specifies the initial conditions for quadrature variables.

QuadErrControl - Error control strategy for quadrature variables [on | off]

Specifies whether quadrature variables are included in the error test.

QuadRelTol - Relative tolerance for quadrature variables [scalar 1e-4]

Specifies the relative tolerance for quadrature variables. This parameter is

used only if QuadErrCon=on.

QuadAbsTol - Absolute tolerance for quadrature variables [scalar or vector 1e-6]

Specifies the absolute tolerance for quadrature variables. This parameter is

used only if QuadErrCon=on.

SensAnalysis - Sensitivity anlaysis [FSA | ASA | off]

Enables sensitivity analysis computations. CVODES can perform both Forward

Sensitivity Analysis (FSA) and Adjoint Sensitivity Analysis (ASA).

FSAInitCond - Initial conditions for sensitivity variables [matrix]

Specifies the initial conditions for sensitivity variables. FSAInitcond

must be a matrix with N rows and Ns columns, where N is the problem

dimension and Ns the number of sensitivity systems.

FSAMethod - FSA solution method [Simultaneous | Staggered1 | Staggered]

Specifies the FSA method for treating the nonlinear system solution for

sensitivity variables. In the simultaneous case, the nonlinear systems

for states and all sensitivities are solved simultaneously. In the

Staggered case, the nonlinear system for states is solved first and then

the nonlinear systems for all sensitivities are solved at the same time.

Finally, in the Staggered1 approach all nonlinear systems are solved in

a sequence (in this case, the sensitivity right-hand sides must be available

for each sensitivity system sepaately - see SensRHS and SensRHStype).

7

FSAParamField - Problem parameters [string]

Specifies the name of the field in the user data structure (passed as an

argument to CVodeMalloc) in which the nominal values of the problem

parameters are stored. This property is used only if CVODES will use difference

quotient approximations to the sensitivity right-hand sides (see SensRHS and

SensRHStype).

FSAParamList - Parameters with respect to which FSA is performed [integer vector]

Specifies a list of Ns parameters with respect to which sensitivities are to

be computed. This property is used only if CVODES will use difference-quotient

approximations to the sensitivity right-hand sides (see SensRHS and SensRHStype).

Its length must be Ns, consistent with the number of columns of FSAinitCond.

FSAParamScales - Order of magnitude for problem parameters [vector]

Provides order of magnitude information for the parameters with respect to

which sensitivities are computed. This information is used if CVODES

approximates the sensitivity right-hand sides (see SensRHS) or if CVODES

estimates integration tolerances for the sensitivity variables (see FSAReltol

and FSAAbsTol).

FSARelTol - Relative tolerance for sensitivity variables [positive scalar]

Specifies the scalar relative tolerance for the sensitivity variables.

See FSAAbsTol.

FSAAbsTol - Absolute tolerance for sensitivity variables [row-vector or matrix]

Specifies the absolute tolerance for sensitivity variables. FSAAbsTol must be

either a row vector of dimension Ns, in which case each of its components is

used as a scalar absolute tolerance for the coresponding sensitivity vector,

or a N x Ns matrix, in which case each of its columns is used as a vector

of absolute tolerances for the corresponding sensitivity vector.

By default, CVODES estimates the integration tolerances for sensitivity

variables, based on those for the states and on the order of magnitude

information for the problem parameters specified through ParamScales.

FSAErrControl - Error control strategy for sensitivity variables [on | off]

Specifies whether sensitivity variables are included in the error control test.

Note that sensitivity variables are always included in the nonlinear system

convergence test.

FSARhsFn - Sensitivity right-hand side function [function]

Specifies a user-supplied function to evaluate the sensitivity right-hand

sides. This property is overloaded. The type of this function must be either

CVSensRhsFn (if it returns the righ-hand sides for all sensitivity systems

at once) or CVSensRhs1Fn (if it returns the right-hand side for the i-th

sensitivity). See SensRHStype. By default, CVODES uses an internal

difference-quotient function to approximate the sensitivity right-hand sides.

FSARhsType - Type of the sensitivity right-hand side function [All | One]

Specifies the type of the function which computes the sensitivity right-hand

sides. FSARhsType = ’All’ indicates that FSARhsFn is of type CVSensRhsFn.

FSARhsType = ’One’ indicates that FSARhsFn is of type CVSensRhs1Fn. Note that

either function type can be used with FSAMethod = ’Simultaneous’ or with

FSAMethod = ’Staggered’, but only FSARhsType = ’One’ is acceptable for

FSAMethod = ’Staggered1’.

FSADQparam - Parameter for the DQ approx. of the sensi. RHS [scalar | 0.0]

Specifies the value which controls the selection of the difference-quotient

scheme used in evaluating the sensitivity right-hand sides. This property is

used only if CVODES will use difference-quotient approximations. The default

value 0.0 indicates the use of the second-order centered directional derivative

formula exclusively. Otherwise, the magnitude of FSADQparam and its sign

(positive or negative) indicates whether this switching is done with regard

8

to (centered or forward) finite differences, respectively.

ASANumDataPoints - Number of data points for ASA [integer | 100]

Specifies the (maximum) number of integration steps between two consecutive

check points.

ASAInterpType - Type of interpolation [Hermite]

Specifies the type of interpolation used for estimating the forward solution

during the backward integration phase. At this time, the only option is

’Hermite’, specifying cubic Hermite interpolation.

MonitorFn - User-provied monitoring function [function]

Specifies a function that is called after each successful integration step.

This function must have type CVMonitorFn. A simple monitoring function,

CVodeMonitor is provided with CVODES.

MonitorData - User-provied data for the monitoring function [struct]

Specifies a data structure that is passed to the Monitor function every time

it is called.

See also

CVRootFn, CVQuadRhsFn

CVSensRhsFn, CVSensRhs1Fn

CVDenseJacFn, CVBandJacFn, CVJacTimesVecFn

CVPrecSetupFn, CVPrecSolveFn

CVGlocalFn, CVGcommFn

CVMonitorFn

CVodeMalloc

Purpose

CVodeMalloc allocates and initializes memory for CVODES.

Synopsis

function [] = CVodeMalloc(fct,t0,y0,varargin)

Description

CVodeMalloc allocates and initializes memory for CVODES.

Usage: CVodeMalloc (ODEFUN, T0, Y0 [, OPTIONS [, DATA]])

ODEFUN is a function defining the ODE right-hand side: y’ = f(t,y).

This function must return a vector containing the current

value of the righ-hand side.

T0 is the initial value of t.

Y0 is the initial condition vector y(t0).

OPTIONS is an (optional) set of integration options, created with

the CVodeSetOptions function.

DATA is (optional) problem data passed unmodified to all

user-provided functions when they are called. For example,

YD = ODEFUN(T,Y,DATA).

See also: CVRhsFn

9

CVodeMallocB

Purpose

CVodeMallocB allocates and initializes backward memory for CVODES.

Synopsis

function [] = CVodeMallocB(fctB,tB0,yB0,varargin)

Description

CVodeMallocB allocates and initializes backward memory for CVODES.

Usage: CVodeMallocB (FCTB, TB0, YB0 [, OPTIONSB])

FCTB is a function defining the adjoint ODE right-hand side.

This function must return a vector containing the current

value of the adjoint ODE righ-hand side.

TB0 is the final value of t.

YB0 is the final condition vector yB(tB0).

OPTIONSB is an (optional) set of integration options, created with

the CVodeSetOptions function.

See also: CVRhsFn

CVode

Purpose

CVode integrates the ODE.

Synopsis

function [status,t,y,varargout] = CVode(tout,itask)

Description

CVode integrates the ODE.

Usage: [STATUS, T, Y] = CVode (TOUT, ITASK)

[STATUS, T, Y, YS] = CVode (TOUT, ITASK)

[STATUS, T, Y, YQ] = CVode (TOUT, ITASK)

[STATUS, T, Y, YQ, YS] = CVode (TOUT, ITASK)

If ITASK is ’Normal’, then the solver integrates from its current internal

T value to a point at or beyond TOUT, then interpolates to T = TOUT and returns

Y(TOUT). If ITASK is ’OneStep’, then the solver takes one internal time step

and returns in Y the solution at the new internal time. In this case, TOUT

is used only during the first call to CVode to determine the direction of

integration and the rough scale of the problem. In either case, the time

reached by the solver is returned in T. The ’NormalTstop’ and ’OneStepTstop’

modes are similar to ’Normal’ and ’OneStep’, respectively, except that the

integration never proceeds past the value tstop.

10

If quadratures were computed (see CVodeSetOptions), CVode will return their

values at T in the vector YQ.

If sensitivity calculations were enabled (see CVodeSetOptions), CVode will

return their values at T in the matrix YS.

On return, STATUS is one of the following:

0: CVode succeeded and no roots were found.

1: CVode succeded and returned at tstop.

2: CVode succeeded, and found one or more roots.

-1: Illegal attempt to call before CVodeMalloc

-2: One of the inputs to CVode is illegal. This includes the situation

when a component of the error weight vectors becomes < 0 during internal

time-stepping.

-4: The solver took mxstep internal steps but could not reach TOUT. The

default value for mxstep is 500.

-5: The solver could not satisfy the accuracy demanded by the user for some

internal step.

-6: Error test failures occurred too many times (MXNEF = 7) during one internal

time step

or occurred with |h| = hmin.

-7: Convergence test failures occurred too many times (MXNCF = 10) during one

internal time step or occurred with |h| = hmin.

-9: The linear solver’s setup routine failed in an unrecoverable manner.

-10: The linear solver’s solve routine failed in an unrecoverable manner.

See also CVodeSetOptions, CVodeGetstats

CVodeB

Purpose

CVodeB integrates the backward ODE.

Synopsis

function [status,t,yB,varargout] = CVodeB(tout,itask)

Description

CVodeB integrates the backward ODE.

Usage: [STATUS, T, YB] = CVodeB (TOUT, ITASK)

[STATUS, T, YB, YQB] = CVodeB (TOUT, ITASK)

If ITASK is ’Normal’, then the solver integrates from its current internal

T value to a point at or beyond TOUT, then interpolates to T = TOUT and returns

YB(TOUT). If ITASK is ’OneStep’, then the solver takes one internal time step

and returns in YB the solution at the new internal time. In this case, TOUT

is used only during the first call to CVodeB to determine the direction of

integration and the rough scale of the problem. In either case, the time

reached by the solver is returned in T.

11

If quadratures were computed (see CVodeSet), CVodeB will return their

values at T in the vector YQB.

On return, STATUS is one of the following:

0: CVodeB succeeded and no roots were found.

-2: One of the inputs to CVodeB is illegal.

-4: The solver took mxstep internal steps but could not reach TOUT.

The default value for mxstep is 500.

-5: The solver could not satisfy the accuracy demanded by the user for

some internal step.

-6: Error test failures occurred too many times (MXNEF = 7) during one

internal time step or occurred with |h| = hmin.

-7: Convergence test failures occurred too many times (MXNCF = 10) during

one internal time step or occurred with |h| = hmin.

-9: The linear solver’s setup routine failed in an unrecoverable manner.

-10: The linear solver’s solve routine failed in an unrecoverable manner.

-101: Illegal attempt to call before initializing adjoint sensitivity

(see CVodeMalloc).

-104: Illegal attempt to call before CVodeMallocB.

-108: Wrong value for TOUT.

See also CVodeSetOptions, CVodeGetstatsB

CVodeGetStats

Purpose

CVodeGetStats returns run statistics for the CVODES solver.

Synopsis

function si = CVodeGetStats()

Description

CVodeGetStats returns run statistics for the CVODES solver.

Usage: STATS = CVodeGetStats

Fields in the structure STATS

o nst - number of integration steps

o nfe - number of right-hand side function evaluations

o nsetups - number of linear solver setup calls

o netf - number of error test failures

o nni - number of nonlinear solver iterations

o ncfn - number of convergence test failures

o qlast - last method order used

o qcur - current method order

o h0used - actual initial step size used

o hlast - last step size used

o hcur - current step size

o tcur - current time reached by the integrator

12

o RootInfo - strucutre with rootfinding information

o QuadInfo - structure with quadrature integration statistics

o LSInfo - structure with linear solver statistics

o FSAInfo - structure with forward sensitivity solver statistics

If rootfinding was requested, the structure RootInfo has the following fields

o nge - number of calls to the rootfinding function

o roots - array of integers (a value of 1 in the i-th component means that the

i-th rootfinding function has a root (upon a return with status=2 from

CVode).

If quadratures were present, the structure QuadInfo has the following fields

o nfQe - number of quadrature integrand function evaluations

o netfQ - number of error test failures for quadrature variables

The structure LSinfo has different fields, depending on the linear solver used.

Fields in LSinfo for the ’Dense’ linear solver

o name - ’Dense’

o njeD - number of Jacobian evaluations

o nfeD - number of right-hand side function evaluations for difference-quotient

Jacobian approximation

Fields in LSinfo for the ’Diag’ linear solver

o name - ’Diag’

o nfeDI - number of right-hand side function evaluations for difference-quotient

Jacobian approximation

Fields in LSinfo for the ’Band’ linear solver

o name - ’Band’

o njeB - number of Jacobian evaluations

o nfeB - number of right-hand side function evaluations for difference-quotient

Jacobian approximation

Fields in LSinfo for the ’GMRES’ and ’BiCGStab’ linear solvers

o name - ’GMRES’ or ’BiCGStab’

o nli - number of linear solver iterations

o npe - number of preconditioner setups

o nps - number of preconditioner solve function calls

o ncfl - number of linear system convergence test failures

o njeSG - number of Jacobian-vector product evaluations

o nfeSG - number of right-hand side function evaluations for difference-quotient

Jacobian-vector product approximation

If forward sensitivities were computed, the structure FSAInfo has the

following fields

o nfSe - number of sensitivity right-hand side evaluations

13

o nfeS - number of right-hand side evaluations for difference-quotient

sensitivity right-hand side approximation

o nsetupsS - number of linear solver setups triggered by sensitivity variables

o netfS - number of error test failures for sensitivity variables

o nniS - number of nonlinear solver iterations for sensitivity variables

o ncfnS - number of convergence test failures due to sensitivity variables

o nniSTGR1 - number of nonlinear solver iterations for each sensitivity system

o ncfnSTGR1 - number of convergence test failures for each sensitivity system

CVodeGetStatsB

Purpose

CVodeGetStatsB returns run statistics for the backward CVODES solver.

Synopsis

function si = CVodeGetStatsB()

Description

CVodeGetStatsB returns run statistics for the backward CVODES solver.

Usage: STATS = CVodeGetStatsB

Fields in the structure STATS

o nst - number of integration steps

o nfe - number of right-hand side function evaluations

o nsetups - number of linear solver setup calls

o netf - number of error test failures

o nni - number of nonlinear solver iterations

o ncfn - number of convergence test failures

o qlast - last method order used

o qcur - current method order

o h0used - actual initial step size used

o hlast - last step size used

o hcur - current step size

o tcur - current time reached by the integrator

o QuadInfo - structure with quadrature integration statistics

o LSInfo - structure with linear solver statistics

The structure LSinfo has different fields, depending on the linear solver used.

If quadratures were present, the structure QuadInfo has the following fields

o nfQe - number of quadrature integrand function evaluations

o netfQ - number of error test failures for quadrature variables

Fields in LSinfo for the ’Dense’ linear solver

o name - ’Dense’

o njeD - number of Jacobian evaluations

o nfeD - number of right-hand side function evaluations for difference-quotient

14

Jacobian approximation

Fields in LSinfo for the ’Diag’ linear solver

o name - ’Diag’

o nfeDI - number of right-hand side function evaluations for difference-quotient

Jacobian approximation

Fields in LSinfo for the ’Band’ linear solver

o name - ’Band’

o njeB - number of Jacobian evaluations

o nfeB - number of right-hand side function evaluations for difference-quotient

Jacobian approximation

Fields in LSinfo for the ’GMRES’ and ’BiCGStab’ linear solvers

o name - ’GMRES’ or ’BiCGStab’

o nli - number of linear solver iterations

o npe - number of preconditioner setups

o nps - number of preconditioner solve function calls

o ncfl - number of linear system convergence test failures

o njeSG - number of Jacobian-vector product evaluations

o nfeSG - number of right-hand side function evaluations for difference-quotient

Jacobian-vector product approximation

CVodeGet

Purpose

CVodeGet extracts data from the CVODES solver memory.

Synopsis

function varargout = CVodeGet(key, varargin)

Description

CVodeGet extracts data from the CVODES solver memory.

Usage: RET = CVodeGet (KEY [, P1 [, P2] ...])

CVodeGet returns internal CVODES information based on KEY. For some values

of KEY, additional arguments may be required and/or more than one output is

returned.

KEY is a string and should be one of:

o DerivSolution - Returns a vector containing the K-th order derivative

of the solution at time T. The time T and order K must be passed through

the input arguments P1 and P2, respectively:

DKY = CVodeGet(’DerivSolution’, T, K)

o ErrorWeights - Returns a vector containing the error weights.

EWT = CVodeGet(’ErrorWeights’)

o CheckPointsInfo - Returns an array of structures with check point information.

15

CK = CVodeGet(’CheckPointInfo)

o CurrentCheckPoint - Returns the address of the active check point

ADDR = CVodeGet(’CurrentCheckPoint’);

o DataPointInfo - Returns information stored for interpolation at the I-th data

point in between the current check points. The index I must be passed through

the agument P1.

If the interpolation type was Hermite (see CVodeSetOptions), it returns two

vectors, Y and YD:

[Y, YD] = CVodeGet(’DataPointInfo’, I)

CVodeFree

Purpose

CVodeFree deallocates memory for the CVODES solver.

Synopsis

function [] = CVodeFree()

Description

CVodeFree deallocates memory for the CVODES solver.

Usage: CVodeFree

CVodeMonitor

Purpose

CVodeMonitor is a simple monitoring function example.

Synopsis

function [] = CVodeMonitor(call, time, sol, varargin)

Description

CVodeMonitor is a simple monitoring function example.

To use it, set the Monitor property in CVodeSetOptions to

’CVodeMonitor’ or to @CVodeMonitor.

With default settings, this function plots the evolution of the step

size, method order, and various counters.

Various properties can be changed from their default values by passing

to CvodeSetOptions, through the property ’MonitorData’, a structure

MONDATA with any of the following fields. If a field is not defined,

the corresponding default value is used.

Fields in MONDATA structure:

o stats [true | false]

If true, CVodeMonitor reports the evolution of the step size and

method order.

16

o cntr [true | false]

If true, CVodeMonitor reports the evolution of the following counters:

nst, nfe, nni, netf, ncfn (see CVodeGetStats)

o sol [true | false]

If true, CvodeMonitor plots all solution components (graphical mode only).

o grph [true | false]

If true, CvodeMonitor plots the evolutions of the above quantities.

Otherwise, it prints to the screen.

o updt [integer | 50]

CvodeMonitor update frequency.

o select [array of integers]

To plot only particular solution components, specify their indeces in

the field select. If defined, it automatically sets sol=true. If not defined,

but sol=true, CVodeMonitor plots all components (graphical mode only).

o xaxis [linear | log]

Type of the time axis for the stepsize, order, and counter plots

(graphical mode only).

o dir [1 | -1]

Specifies forward or backward integration.

See also CVodeSetOptions, CVMonitorFn

Source Code

1 f unc t i on [] = CVodeMonitor (c a l l , time , so l , va ra rg in)
39

40 % Radu Serban <radu@l ln l . gov>
41 % Copyright (c) 2005 , The Regents o f the Un ive r s i ty o f Ca l i f o r n i a .
42 % $Revis ion$Date$
43

44 p e r s i s t e n t data
45 p e r s i s t e n t f i r s t
46 p e r s i s t e n t hf1 hf2 npl
47 p e r s i s t e n t i
48 p e r s i s t e n t t y h q nst n fe nni n e t f ncfn
49

50 i f c a l l == 0
51

52 i f narg in > 3
53 data = vararg in {1} ;
54 end
55

56 data = i n i t i a l i z e d a t a (data , l ength (s o l)) ;
57

58 f i r s t = true ;
59 i f data . grph
60 npl = 0 ;
61 i f data . s t a t s
62 npl = npl + 2 ;
63 end
64 i f data . cntr
65 npl = npl + 1 ;
66 end
67 i f npl ˜= 0
68 hf1 = f i g u r e ;

17

69 end
70 end
71 i f data . s o l
72 hf2 = f i g u r e ;
73 colormap (data .map) ;
74 end
75

76 i = 1 ;
77 t = ze ro s (1 , data . updt) ;
78 i f data . s t a t s
79 h = ze ro s (1 , data . updt) ;
80 q = ze ro s (1 , data . updt) ;
81 end
82 i f data . cntr
83 nst = ze ro s (1 , data . updt) ;
84 nfe = ze ro s (1 , data . updt) ;
85 nni = ze ro s (1 , data . updt) ;
86 ne t f = ze ro s (1 , data . updt) ;
87 ncfn = ze ro s (1 , data . updt) ;
88 end
89 i f data . s o l
90 N = length (data . s e l e c t) ;
91 y = ze ro s (N, data . updt) ;
92 end
93

94 re turn ;
95

96 end
97

98 % Load cur rent s t a t i s t i c s
99

100 i f data . d i r == 1
101 s i = CVodeGetStats ;
102 e l s e
103 s i = CVodeGetStatsB ;
104 end
105

106 t (i) = s i . t cur ;
107

108 i f data . s t a t s
109 h(i) = s i . h l a s t ;
110 q (i) = s i . q l a s t ;
111 end
112

113 i f data . cntr
114 nst (i) = s i . nst ;
115 nfe (i) = s i . n f e ;
116 nni (i) = s i . nni ;
117 ne t f (i) = s i . n e t f ;
118 ncfn (i) = s i . ncfn ;
119 end
120

121 i f data . s o l
122 N = length (data . s e l e c t) ;

18

123 f o r j = 1 :N
124 y (j , i) = s o l (data . s e l e c t (j)) ;
125 end
126 e l s e
127 N = 0 ;
128 end
129

130 % Fina l i z e post
131

132 i f c a l l == 2
133 i f data . grph
134 g r a p h i c a l f i n a l (i , . . .
135 hf1 , npl , data . s t a t s , data . cntr , data . so l , data . d i r , . . .
136 t , h , q , nst , nfe , nni , net f , ncfn , . . .
137 hf2 , y , N, data . s e l e c t) ;
138 e l s e
139 t e x t f i n a l (i , data . s t a t s , data . cntr , t , h , q , nst , nfe , nni , net f , ncfn) ;
140 end
141 re turn
142 end
143

144 % Is i t time to post ?
145

146 i f i == data . updt
147

148 i f f i r s t
149 i f data . grph
150 g r a p h i c a l i n i t (hf1 , npl , data . s t a t s , data . cntr , data . so l , data . d i r , . . .
151 t , h , q , nst , nfe , nni , net f , ncfn , . . .
152 hf2 , y , N, data . xax i s) ;
153 e l s e
154 text update (data . s t a t s , data . cntr , t , h , q , nst , nfe , nni , net f , ncfn) ;
155 end
156 f i r s t = f a l s e ;
157 e l s e
158 i f data . grph
159 graph i ca l update (hf1 , npl , data . s t a t s , data . cntr , data . so l , data . d i r , . . .
160 t , h , q , nst , nfe , nni , net f , ncfn , . . .
161 hf2 , y , N) ;
162 e l s e
163 text update (data . s t a t s , data . cntr , t , h , q , nst , nfe , nni , net f , ncfn) ;
164 end
165 end
166 i = 1 ;
167 e l s e
168 i = i + 1 ;
169 end
170

171

172

173 %−−−
174

175 f unc t i on data = i n i t i a l i z e d a t a (data , N)
176

19

177 i f ˜ i s f i e l d (data , ’ grph ’)
178 data . grph = true ;
179 end
180 i f ˜ i s f i e l d (data , ’ updt ’)
181 data . updt = 50 ;
182 end
183 i f ˜ i s f i e l d (data , ’ s t a t s ’)
184 data . s t a t s = true ;
185 end
186 i f ˜ i s f i e l d (data , ’ cnt r ’)
187 data . cntr = true ;
188 end
189 i f ˜ i s f i e l d (data , ’ s o l ’)
190 data . s o l = f a l s e ;
191 end
192 i f ˜ i s f i e l d (data , ’map ’)
193 data .map = ’ d e f au l t ’ ;
194 end
195 i f ˜ i s f i e l d (data , ’ s e l e c t ’)
196 data . s e l e c t = [1 :N] ;
197 e l s e
198 data . s o l = true ;
199 end
200 i f ˜ i s f i e l d (data , ’ xax i s ’)
201 data . xax i s = ’ l og ’ ;
202 end
203 i f ˜ i s f i e l d (data , ’ d i r ’)
204 data . d i r = 1 ;
205 end
206

207 i f ˜data . grph
208 data . s o l = f a l s e ;
209 end
210

211 %−−−
212

213 f unc t i on [] = g r a p h i c a l i n i t (hf1 , npl , s t a t s , cntr , so l , d i r , . . .
214 t , h , q , nst , nfe , nni , net f , ncfn , . . .
215 hf2 , y , N, xax i s)
216

217 i f npl ˜= 0
218 f i g u r e (hf1) ;
219 pl = 0 ;
220 end
221

222 % Step s i z e and order
223 i f s t a t s
224 pl = pl +1;
225 subp lot (npl , 1 , p l)
226 semi logy (t , abs (h) , ’− ’) ;
227 i f strcmp (xaxis , ’ l og ’)
228 s e t (gca , ’ XScale ’ , ’ l og ’) ;
229 end
230 hold on ;

20

231 box on ;
232 g r id on ;
233 x l ab e l (’ t ’) ;
234 y l ab e l (’ | Step s i z e | ’) ;
235

236 pl = pl +1;
237 subp lot (npl , 1 , p l)
238 p lo t (t , q , ’− ’) ;
239 i f strcmp (xaxis , ’ l og ’)
240 s e t (gca , ’ XScale ’ , ’ l og ’) ;
241 end
242 hold on ;
243 box on ;
244 g r id on ;
245 x l ab e l (’ t ’) ;
246 y l ab e l (’ Order ’) ;
247 end
248

249 % Counters
250 i f cnt r
251 pl = pl +1;
252 subp lot (npl , 1 , p l)
253 semi logy (t , nst , ’ k− ’) ;
254 hold on ;
255 semi logy (t , nfe , ’b− ’) ;
256 semi logy (t , nni , ’ r− ’) ;
257 semi logy (t , net f , ’ g− ’) ;
258 semi logy (t , ncfn , ’ c− ’) ;
259 i f strcmp (xaxis , ’ l og ’)
260 s e t (gca , ’ XScale ’ , ’ l og ’) ;
261 end
262 box on ;
263 g r id on ;
264 x l ab e l (’ t ’) ;
265 y l ab e l (’ Counters ’) ;
266 end
267

268 % So lut i on components
269 i f s o l
270 f i g u r e (hf2) ;
271 map = colormap ;
272 nco l s = s i z e (map , 1) ;
273 hold on ;
274 f o r i = 1 :N
275 hp = p lo t (t , y (i , :) , ’− ’) ;
276 i c = 1+(i −1)∗ f l o o r (nco l s /N) ;
277 s e t (hp , ’ Color ’ ,map(ic , :)) ;
278 end
279 i f strcmp (xaxis , ’ l og ’)
280 s e t (gca , ’ XScale ’ , ’ l og ’) ;
281 end
282 box on ;
283 g r id on ;
284 x l ab e l (’ t ’) ;

21

285 y l ab e l (’ y ’) ;
286 t i t l e (’ So lu t i on ’) ;
287 end
288

289 drawnow ;
290

291 %−−−
292

293 f unc t i on [] = graph i ca l update (hf1 , npl , s t a t s , cntr , so l , d i r , . . .
294 t , h , q , nst , nfe , nni , net f , ncfn , . . .
295 hf2 , y , N)
296

297 i f npl ˜= 0
298 f i g u r e (hf1) ;
299 pl = 0 ;
300 end
301

302 % Step s i z e and order
303 i f s t a t s
304 pl = pl +1;
305 subp lot (npl , 1 , p l)
306 hc = get (gca , ’ Chi ldren ’) ;
307 xd = [get (hc , ’XData ’) t] ;
308 yd = [get (hc , ’YData ’) abs (h)] ;
309 i f l ength (xd) ˜= length (yd)
310 di sp (’h ’) ;
311 end
312 s e t (hc , ’XData ’ , xd , ’YData ’ , yd) ;
313

314 pl = pl +1;
315 subp lot (npl , 1 , p l)
316 hc = get (gca , ’ Chi ldren ’) ;
317 xd = [get (hc , ’XData ’) t] ;
318 yd = [get (hc , ’YData ’) q] ;
319 i f l ength (xd) ˜= length (yd)
320 di sp (’ q ’) ;
321 end
322 s e t (hc , ’XData ’ , xd , ’YData ’ , yd) ;
323 end
324

325 % Counters
326 i f cnt r
327 pl = pl +1;
328 subp lot (npl , 1 , p l)
329 hc = get (gca , ’ Chi ldren ’) ;
330 % Attent ion : Chi ldren are loaded in r e v e r s e order !
331 xd = [get (hc (1) , ’XData ’) t] ;
332 yd = [get (hc (1) , ’YData ’) ncfn] ;
333 s e t (hc (1) , ’XData ’ , xd , ’YData ’ , yd) ;
334 yd = [get (hc (2) , ’YData ’) n e t f] ;
335 s e t (hc (2) , ’XData ’ , xd , ’YData ’ , yd) ;
336 yd = [get (hc (3) , ’YData ’) nni] ;
337 s e t (hc (3) , ’XData ’ , xd , ’YData ’ , yd) ;
338 yd = [get (hc (4) , ’YData ’) n fe] ;

22

339 s e t (hc (4) , ’XData ’ , xd , ’YData ’ , yd) ;
340 yd = [get (hc (5) , ’YData ’) nst] ;
341 s e t (hc (5) , ’XData ’ , xd , ’YData ’ , yd) ;
342 end
343

344 % So lut i on components
345 i f s o l
346 f i g u r e (hf2) ;
347 hc = get (gca , ’ Chi ldren ’) ;
348 xd = [get (hc (1) , ’XData ’) t] ;
349 % Attent ion : Chi ldren are loaded in r e v e r s e order !
350 f o r i = 1 :N
351 yd = [get (hc (i) , ’YData ’) y (N−i + 1 , :)] ;
352 s e t (hc (i) , ’XData ’ , xd , ’YData ’ , yd) ;
353 end
354 end
355

356 drawnow ;
357

358 %−−−
359

360 f unc t i on [] = g r a p h i c a l f i n a l (n , hf1 , npl , s t a t s , cntr , so l , d i r , . . .
361 t , h , q , nst , nfe , nni , net f , ncfn , . . .
362 hf2 , y , N, s e l e c t)
363

364 i f npl ˜= 0
365 f i g u r e (hf1) ;
366 pl = 0 ;
367 end
368

369 % Step s i z e and order
370 i f s t a t s
371 pl = pl +1;
372 subp lot (npl , 1 , p l)
373 hc = get (gca , ’ Chi ldren ’) ;
374 xd = [get (hc , ’XData ’) t (1 : n−1)] ;
375 yd = [get (hc , ’YData ’) abs (h (1 : n−1))] ;
376 s e t (hc , ’XData ’ , xd , ’YData ’ , yd) ;
377 % xlim = get (gca , ’XLim ’) ;
378 % se t (gca , ’XLim ’ , [xl im (1) t (n−1)]) ;
379

380 pl = pl +1;
381 subp lot (npl , 1 , p l)
382 hc = get (gca , ’ Chi ldren ’) ;
383 xd = [get (hc , ’XData ’) t (1 : n−1)] ;
384 yd = [get (hc , ’YData ’) q (1 : n−1)] ;
385 s e t (hc , ’XData ’ , xd , ’YData ’ , yd) ;
386 % xlim = get (gca , ’XLim ’) ;
387 % se t (gca , ’XLim ’ , [xl im (1) t (n−1)]) ;
388 ylim = get (gca , ’YLim ’) ;
389 s e t (gca , ’YLim ’ , [yl im (1)−1 ylim (2)+1]) ;
390 end
391

392 % Counters

23

393 i f cnt r
394 pl = pl +1;
395 subp lot (npl , 1 , p l)
396 hc = get (gca , ’ Chi ldren ’) ;
397 xd = [get (hc (1) , ’XData ’) t (1 : n−1)] ;
398 yd = [get (hc (1) , ’YData ’) ncfn (1 : n−1)] ;
399 s e t (hc (1) , ’XData ’ , xd , ’YData ’ , yd) ;
400 yd = [get (hc (2) , ’YData ’) n e t f (1 : n−1)] ;
401 s e t (hc (2) , ’XData ’ , xd , ’YData ’ , yd) ;
402 yd = [get (hc (3) , ’YData ’) nni (1 : n−1)] ;
403 s e t (hc (3) , ’XData ’ , xd , ’YData ’ , yd) ;
404 yd = [get (hc (4) , ’YData ’) n fe (1 : n−1)] ;
405 s e t (hc (4) , ’XData ’ , xd , ’YData ’ , yd) ;
406 yd = [get (hc (5) , ’YData ’) nst (1 : n−1)] ;
407 s e t (hc (5) , ’XData ’ , xd , ’YData ’ , yd) ;
408 % xlim = get (gca , ’XLim ’) ;
409 % se t (gca , ’XLim ’ , [xl im (1) t (n−1)]) ;
410 l egend (’ nst ’ , ’ n f e ’ , ’ nni ’ , ’ n e t f ’ , ’ ncfn ’ , 2) ;
411 end
412

413 % So lut i on components
414 i f s o l
415 f i g u r e (hf2) ;
416 hc = get (gca , ’ Chi ldren ’) ;
417 xd = [get (hc (1) , ’XData ’) t (1 : n−1)] ;
418 % Attent ion : Chi ldren are loaded in r e v e r s e order !
419 f o r i = 1 :N
420 yd = [get (hc (i) , ’YData ’) y (N−i +1 ,1:n−1)] ;
421 s e t (hc (i) , ’XData ’ , xd , ’YData ’ , yd) ;
422 c s t r i n g { i } = sp r i n t f (’ y {%d} ’ , i) ;
423 end
424 l egend (c s t r i n g) ;
425 end
426

427 drawnow ;
428

429 %−−−
430

431 f unc t i on [] = t e x t i n i t (s t a t s , cntr , t , h , q , nst , nfe , nni , net f , ncfn)
432

433 %−−−
434

435 f unc t i on [] = text update (s ta t s , cntr , t , h , q , nst , nfe , nni , net f , ncfn)
436

437 n = length (t) ;
438 f o r i = 1 : n
439 i f s t a t s
440 f p r i n t f (’%8.3 e %12.6 e %1d | ’ , t (i) , h (i) , q (i)) ;
441 end
442 i f cnt r
443 f p r i n t f (’%5d %5d %5d %5d %5d\n ’ , nst (i) , n f e (i) , nni (i) , n e t f (i) , ncfn (i)) ;
444 e l s e
445 f p r i n t f (’ \n ’) ;
446 end

24

447 end
448 f p r i n t f (’−−−−−\n ’) ;
449

450 %−−−
451

452 f unc t i on [] = t e x t f i n a l (n , s t a t s , cntr , t , h , q , nst , nfe , nni , net f , ncfn)
453

454 f o r i = 1 : n−1
455 i f s t a t s
456 f p r i n t f (’%8.3 e %12.6 e %1d | ’ , t (i) , h (i) , q (i)) ;
457 end
458 i f cnt r
459 f p r i n t f (’%5d %5d %5d %5d %5d\n ’ , nst (i) , n f e (i) , nni (i) , n e t f (i) , ncfn (i)) ;
460 e l s e
461 f p r i n t f (’ \n ’) ;
462 end
463 end
464 f p r i n t f (’−−−−−\n ’) ;

25

2.2 Function types

CVBandJacFn

Purpose

CVBandJacFn - type for user provided banded Jacobian function.

Synopsis

This is a script file.

Description

CVBandJacFn - type for user provided banded Jacobian function.

IVP Problem

The function BJACFUN must be defined as

FUNCTION J = BJACFUN(T,Y,FY)

and must return a matrix J corresponding to the banded Jacobian of f(t,y).

The input argument FY contains the current value of f(t,y).

If a user data structure DATA was specified in CVodeMalloc, then

BJACFUN must be defined as

FUNCTION [J, NEW_DATA] = BJACFUN(T,Y,FY,DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the matrix J,

the BJACFUN function must also set NEW_DATA. Otherwise, it should

set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to

unnecessary copying).

Adjoint Problem

The function BJACFUNB must be defined either as

FUNCTION JB = BJACFUNB(T,Y,YB,FYB)

or as

FUNCTION [JB, NEW_DATA] = BJACFUNB(T,Y,YB,FYB,DATA)

depending on whether a user data structure DATA was specified in

CVodeMalloc. In either case, it must return the matrix JB, the

Jacobian of fB(t,y,yB), with respect to yB. The input argument

FYB contains the current value of f(t,y,yB).

See also CVodeSetOptions

See the CVODES user guide for more informaiton on the structure of

a banded Jacobian.

NOTE: BJACFUN and BJACFUNB are specified through the property

JacobianFn to CVodeSetOptions and are used only if the property

LinearSolver was set to ’Band’.

CVDenseJacFn

26

Purpose

CVDenseJacFn - type for user provided dense Jacobian function.

Synopsis

This is a script file.

Description

CVDenseJacFn - type for user provided dense Jacobian function.

IVP Problem

The function DJACFUN must be defined as

FUNCTION J = DJACFUN(T,Y,FY)

and must return a matrix J corresponding to the Jacobian of f(t,y).

The input argument FY contains the current value of f(t,y).

If a user data structure DATA was specified in CVodeMalloc, then

DJACFUN must be defined as

FUNCTION [J, NEW_DATA] = DJACFUN(T,Y,FY,DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the matrix J,

the DJACFUN function must also set NEW_DATA. Otherwise, it should

set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to

unnecessary copying).

Adjoint Problem

The function DJACFUNB must be defined either as

FUNCTION JB = DJACFUNB(T,Y,YB,FYB)

or as

FUNCTION [JB, NEW_DATA] = DJACFUNB(T,Y,YB,FYB,DATA)

depending on whether a user data structure DATA was specified in

CVodeMalloc. In either case, it must return the matrix JB, the

Jacobian of fB(t,y,yB), with respect to yB. The input argument

FYB contains the current value of f(t,y,yB).

See also CVodeSetOptions

NOTE: DJACFUN and DJACFUNB are specified through the property

JacobianFn to CVodeSetOptions and are used only if the property

LinearSolver was set to ’Dense’.

CVGcommFn

Purpose

CVGcommFn - type for user provided communication function (BBDPre).

Synopsis

This is a script file.

Description

27

CVGcommFn - type for user provided communication function (BBDPre).

IVP Problem

The function GCOMFUN must be defined as

FUNCTION [] = GCOMFUN(T,Y)

and can be used to perform all interprocess communication necessary

to evaluate the approximate right-hand side function for the BBDPre

preconditioner module.

If a user data structure DATA was specified in CVodeMalloc, then

GCOMFUN must be defined as

FUNCTION [NEW_DATA] = GCOMFUN(T,Y,DATA)

If the local modifications to the user data structure are needed

in other user-provided functions then the GCOMFUN function must also

set NEW_DATA. Otherwise, it should set NEW_DATA=[] (do not set

NEW_DATA = DATA as it would lead to unnecessary copying).

Adjoint Problem

The function GCOMFUNB must be defined either as

FUNCTION [] = GCOMFUNB(T,Y,YB)

or as

FUNCTION [NEW_DATA] = GCOMFUNB(T,Y,YB,DATA)

depending on whether a user data structure DATA was specified in

CVodeMalloc.

See also CVGlocalFn, CVodeSetOptions

NOTES:

GCOMFUN and GCOMFUNB are specified through the GcommFn property in

CVodeSetOptions and are used only if the property PrecModule is set

to ’BBDPre’.

Each call to GCOMFUN is preceded by a call to the RHS function

ODEFUN with the same arguments T and Y (and YB in the case of GCOMFUNB).

Thus GCOMFUN can omit any communication done by ODEFUN if relevant

to the evaluation of G by GLOCFUN. If all necessary communication

was done by ODEFUN, GCOMFUN need not be provided.

CVGlocalFn

Purpose

CVGlocalFn - type for user provided RHS approximation function (BBDPre).

Synopsis

This is a script file.

Description

CVGlocalFn - type for user provided RHS approximation function (BBDPre).

IVP Problem

28

The function GLOCFUN must be defined as

FUNCTION G = GLOCFUN(T,Y)

and must return a vector G corresponding to an approximation to f(t,y)

which will be used in the BBDPRE preconditioner module. The case where

G is mathematically identical to F is allowed.

If a user data structure DATA was specified in CVodeMalloc, then

GLOCFUN must be defined as

FUNCTION [G, NEW_DATA] = GLOCFUN(T,Y,DATA)

If the local modifications to the user data structure are needed

in other user-provided functions then, besides setting the vector G,

the GLOCFUN function must also set NEW_DATA. Otherwise, it should set

NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to

unnecessary copying).

Adjoint Problem

The function GLOCFUNB must be defined either as

FUNCTION GB = GLOCFUNB(T,Y,YB)

or as

FUNCTION [GB, NEW_DATA] = GLOCFUNB(T,Y,YB,DATA)

depending on whether a user data structure DATA was specified in

CVodeMalloc. In either case, it must return the vector GB

corresponding to an approximation to fB(t,y,yB).

See also CVGcommFn, CVodeSetOptions

NOTE: GLOCFUN and GLOCFUNB are specified through the GlocalFn property

in CVodeSetOptions and are used only if the property PrecModule

is set to ’BBDPre’.

CVMonitorFn

Purpose

CVMonitorFn - type for user provided monitoring function.

Synopsis

This is a script file.

Description

CVMonitorFn - type for user provided monitoring function.

The function MONFUN must be defined as

FUNCTION [] = MONFUN(CALL, T, Y, SSTATS)

It is called after every internal CVode step and can be used to

monitor the progress of the solver. MONFUN is called with CALL=0

from CVodeMalloc at which time it should initialize itself and it

is called with CALL=2 from CVodeFree. Otherwise, CALL=1.

It receives as arguments the current time T, solution vector Y,

and solver statistics structure SSTATS (same as if obtained by

29

a call to CVodeGetStats or CVodeGetStatsB).

If additional data is needed inside MONFUN, it must be defined

as

FUNCTION [] = MONFUN(CALL, T, Y, SSTATS, MONDATA)

A sample monitoring function, CVodeMonitor, is provided with CVODES.

See also CVodeSetOptions, CVodeMonitor

NOTES:

MONFUN is specified through the MonitorFn property in CVodeSetOptions.

If this property is not set, or if it is empty, MONFUN is not used.

MONDATA is specified through the MonitorData property in CVodeSetOptions.

CVQuadRhsFn

Purpose

CVQuadRhsFn - type for user provided quadrature RHS function.

Synopsis

This is a script file.

Description

CVQuadRhsFn - type for user provided quadrature RHS function.

IVP Problem

The function ODEQFUN must be defined as

FUNCTION YQD = ODEQFUN(T,Y)

and must return a vector YQD corresponding to fQ(t,y), the integrand

for the integral to be evaluated.

If a user data structure DATA was specified in CVodeMalloc, then

ODEQFUN must be defined as

FUNCTION [YQD, NEW_DATA] = ODEQFUN(T,Y,DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the vector YQD,

the ODEQFUN function must also set NEW_DATA. Otherwise, it should set

NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to

unnecessary copying).

Adjoint Problem

The function ODEQFUNB must be defined either as

FUNCTION YQBD = ODEQFUNB(T,Y,YB)

or as

FUNCTION [YQBD, NEW_DATA] = ODEQFUNB(T,Y,YB,DATA)

depending on whether a user data structure DATA was specified in

CVodeMalloc. In either case, it must return the vector YQBD

corresponding to fQB(t,y,yB), the integrand for the integral to be

30

evaluated on the backward phase.

See also CVodeSetOptions

NOTE: ODEQFUN and ODEQFUNB are specified through the property

QuadRhsFn to CVodeSetOptions and are used only if the property

Quadratures was set to ’on’.

CVRhsFn

Purpose

CVRhsFn - type for user provided RHS type

Synopsis

This is a script file.

Description

CVRhsFn - type for user provided RHS type

IVP Problem

The function ODEFUN must be defined as

FUNCTION YD = ODEFUN(T,Y)

and must return a vector YD corresponding to f(t,y).

If a user data structure DATA was specified in CVodeMalloc, then

ODEFUN must be defined as

FUNCTION [YD, NEW_DATA] = ODEFUN(T,Y,DATA)

If the local modifications to the user data structure are needed

in other user-provided functions then, besides setting the vector YD,

the ODEFUN function must also set NEW_DATA. Otherwise, it should set

NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to

unnecessary copying).

Adjoint Problem

The function ODEFUNB must be defined either as

FUNCTION YBD = ODEFUNB(T,Y,YB)

or as

FUNCTION [YBD, NEW_DATA] = ODEFUNB(T,Y,YB,DATA)

depending on whether a user data structure DATA was specified in

CVodeMalloc. In either case, it must return the vector YBD

corresponding to fB(t,y,yB).

See also CVodeMalloc, CVodeMallocB

NOTE: ODEFUN and ODEFUNB are specified through the CVodeMalloc and

CVodeMallocB functions, respectively.

CVRootFn

31

Purpose

CVRootFn - type for user provided root-finding function.

Synopsis

This is a script file.

Description

CVRootFn - type for user provided root-finding function.

The function ROOTFUN must be defined as

FUNCTION G = ROOTFUN(T,Y)

and must return a vector G corresponding to g(t,y).

If a user data structure DATA was specified in CVodeMalloc, then

ROOTFUN must be defined as

FUNCTION [G, NEW_DATA] = ROOTFUN(T,Y,DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the vector G,

the ROOTFUN function must also set NEW_DATA. Otherwise, it should

set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to

unnecessary copying).

See also CVodeSetOptions

NOTE: ROOTFUN is specified through the RootsFn property in

CVodeSetOptions and is used only if the property NumRoots is a

positive integer.

CVSensRhs1Fn

Purpose

CVSensRhs1Fn - type for user provided sensitivity RHS function (single).

Synopsis

This is a script file.

Description

CVSensRhs1Fn - type for user provided sensitivity RHS function (single).

The function ODES1FUN must be defined as

FUNCTION YSD = ODES1FUN(IS,T,Y,YD,YS)

and must return a vector YSD corresponding to fS_is(t,y,yS).

If a user data structure DATA was specified in CVodeMalloc, then

ODES1FUN must be defined as

FUNCTION [YSD, NEW_DATA] = ODES1FUN(IS,T,Y,YD,YS,DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the vector YSD,

the ODES1FUN function must also set NEW_DATA. Otherwise, it should

set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to

unnecessary copying).

32

See also CVodeSetOptions

NOTE: ODES1FUN is specified through the property FSARhsFn to CVodeSetOptions

and is used only if the property SensiAnalysis was set to ’FSA’ and if the

property FSARhsType was set to ’One’.

CVSensRhsFn

Purpose

CVSensRhsFn - type for user provided sensitivity RHS function.

Synopsis

This is a script file.

Description

CVSensRhsFn - type for user provided sensitivity RHS function.

The function ODESFUN must be defined as

FUNCTION YSD = ODESFUN(T,Y,YD,YS)

and must return a matrix YSD corresponding to fS(t,y,yS).

If a user data structure DATA was specified in CVodeMalloc, then

ODESFUN must be defined as

FUNCTION [YSD, NEW_DATA] = ODESFUN(T,Y,YD,YS,DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the matrix YSD,

the ODESFUN function must also set NEW_DATA. Otherwise, it should

set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to

unnecessary copying).

See also CVodeSetOptions

NOTE: ODESFUN is specified through the property FSARhsFn to CVodeSetOptions

and is used only if the property SensiAnalysis was set to ’FSA’ and if the

property FSARhsType was set to ’All’.

CVJacTimesVecFn

Purpose

CVJacTimesVecFn - type for user provided Jacobian times vector function.

Synopsis

This is a script file.

Description

33

CVJacTimesVecFn - type for user provided Jacobian times vector function.

IVP Problem

The function JTVFUN must be defined as

FUNCTION JV = JTVFUN(T,Y,FY,V)

and must return a vector JV corresponding to the product of the

Jacobian of f(t,y) with the vector v.

The input argument FY contains the current value of f(t,y).

If a user data structure DATA was specified in CVodeMalloc, then

JTVFUN must be defined as

FUNCTION [JV, NEW_DATA] = JTVFUN(T,Y,FY,V,DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the vector JV,

the JTVFUN function must also set NEW_DATA. Otherwise, it should set

NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to

unnecessary copying).

Adjoint Problem

The function JTVFUNB must be defined either as

FUNCTION JVB = JTVFUNB(T,Y,YB,FYB,VB)

or as

FUNCTION [JVB, NEW_DATA] = JTVFUNB(T,Y,YB,FYB,VB,DATA)

depending on whether a user data structure DATA was specified in

CVodeMalloc. In either case, it must return the vector JVB, the

product of the Jacobian of fB(t,y,yB) with respect to yB and a vector

vB. The input argument FYB contains the current value of f(t,y,yB).

See also CVodeSetOptions

NOTE: JTVFUN and JTVFUNB are specified through the property

JacobianFn to CVodeSetOptions and are used only if the property

LinearSolver was set to ’GMRES’ or ’BiCGStab’.

CVPrecSetupFn

Purpose

CVPrecSetupFn - type for user provided preconditioner setup function.

Synopsis

This is a script file.

Description

CVPrecSetupFn - type for user provided preconditioner setup function.

The user-supplied preconditioner setup function PSETFUN and

the user-supplied preconditioner solve function PSOLFUN

together must define left and right preconditoner matrices

P1 and P2 (either of which may be trivial), such that the

product P1*P2 is an approximation to the Newton matrix

34

M = I - gamma*J. Here J is the system Jacobian J = df/dy,

and gamma is a scalar proportional to the integration step

size h. The solution of systems P z = r, with P = P1 or P2,

is to be carried out by the PrecSolve function, and PSETFUN

is to do any necessary setup operations.

The user-supplied preconditioner setup function PSETFUN

is to evaluate and preprocess any Jacobian-related data

needed by the preconditioner solve function PSOLFUN.

This might include forming a crude approximate Jacobian,

and performing an LU factorization on the resulting

approximation to M. This function will not be called in

advance of every call to PSOLFUN, but instead will be called

only as often as necessary to achieve convergence within the

Newton iteration. If the PSOLFUN function needs no

preparation, the PSETFUN function need not be provided.

For greater efficiency, the PSETFUN function may save

Jacobian-related data and reuse it, rather than generating it

from scratch. In this case, it should use the input flag JOK

to decide whether to recompute the data, and set the output

flag JCUR accordingly.

Each call to the PSETFUN function is preceded by a call to

ODEFUN with the same (t,y) arguments. Thus the PSETFUN

function can use any auxiliary data that is computed and

saved by the ODEFUN function and made accessible to PSETFUN.

IVP Problem

The function PSETFUN must be defined as

FUNCTION [JCUR, ERR] = PSETFUN(T,Y,FY,JOK,GAMMA)

and must return a logical flag JCUR (true if Jacobian information

was recomputed and false if saved data was reused). If PSETFUN

was successful, it must return ERR=0. For a recoverable error (in

which case the setup will be retried) it must set ERR to a positive

integer value. If an unrecoverable error occurs, it must set ERR

to a negative value, in which case the integration will be halted.

The input argument FY contains the current value of f(t,y).

If the input logical flag JOK is false, it means that

Jacobian-related data must be recomputed from scratch. If it is true,

it means that Jacobian data, if saved from the previous PSETFUN call

can be reused (with the current value of GAMMA).

If a user data structure DATA was specified in CVodeMalloc, then

PSETFUN must be defined as

FUNCTION [JCUR, ERR, NEW_DATA] = PSETFUN(T,Y,FY,JOK,GAMMA,DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the flags JCUR

and ERR, the PSETFUN function must also set NEW_DATA. Otherwise, it

should set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead

to unnecessary copying).

Adjoint Problem

35

The function PSETFUNB must be defined either as

FUNCTION [JCURB, ERR] = PSETFUNB(T,Y,YB,FYB,JOK,GAMMAB)

or as

FUNCTION [JCURB, ERR, NEW_DATA] = PSETFUNB(T,Y,YB,FYB,JOK,GAMMAB,DATA)

depending on whether a user data structure DATA was specified in

CVodeMalloc. In either case, it must return the flags JCURB and ERR.

See also CVPrecSolveFn, CVodeSetOptions

NOTE: PSETFUN and PSETFUNB are specified through the property

PrecSetupFn to CVodeSetOptions and are used only if the property

LinearSolver was set to ’GMRES’ or ’BiCGStab’ and if the property

PrecType is not ’None’.

CVPrecSolveFn

Purpose

CVPrecSolveFn - type for user provided preconditioner solve function.

Synopsis

This is a script file.

Description

CVPrecSolveFn - type for user provided preconditioner solve function.

The user-supplied preconditioner solve function PSOLFN

is to solve a linear system P z = r in which the matrix P is

one of the preconditioner matrices P1 or P2, depending on the

type of preconditioning chosen.

IVP Problem

The function PSOLFUN must be defined as

FUNCTION [Z, ERR] = PSOLFUN(T,Y,FY,R)

and must return a vector Z containing the solution of Pz=r.

If PSOLFUN was successful, it must return ERR=0. For a recoverable

error (in which case the step will be retried) it must set ERR to a

positive value. If an unrecoverable error occurs, it must set ERR

to a negative value, in which case the integration will be halted.

The input argument FY contains the current value of f(t,y).

If a user data structure DATA was specified in CVodeMalloc, then

PSOLFUN must be defined as

FUNCTION [Z, ERR, NEW_DATA] = PSOLFUN(T,Y,FY,R,DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the vector Z and

the flag ERR, the PSOLFUN function must also set NEW_DATA. Otherwise,

it should set NEW_DATA=[] (do not set NEW_DATA = DATA as it would

lead to unnecessary copying).

36

Adjoint Problem

The function PSOLFUNB must be defined either as

FUNCTION [ZB, ERR] = PSOLFUNB(T,Y,YB,FYB,RB)

or as

FUNCTION [ZB, ERR, NEW_DATA] = PSOLFUNB(T,Y,YB,FYB,RB,DATA)

depending on whether a user data structure DATA was specified in

CVodeMalloc. In either case, it must return the vector ZB and the

flag ERR.

See also CVPrecSetupFn, CVodeSetOptions

NOTE: PSOLFUN and PSOLFUNB are specified through the property

PrecSolveFn to CVodeSetOptions and are used only if the property

LinearSolver was set to ’GMRES’ or ’BiCGStab’ and if the property

PrecType is not ’None’.

37

3 matlab Interface to kinsol

The matlab interface to kinsol provides access to all functionality of the kinsol solver.
The interface consists of 5 user-callable functions. The user must provide several required and

optional user-supplied functions which define the problem to be solved. The user-callable functions
and the types of user-supplied functions are listed in Table 2 and fully documented later in this
section. For more in depth details, consult also the kinsol user guide [1].

To illustrate the use of the kinsol matlab interface, several example problems are provided with
sundialsTB, both for serial and parallel computations. Most of them are matlab translations of
example problems provided with kinsol.

Table 2: kinsol matlab interface functions

F
u
n
ct
io
n
s KINSetOptions creates an options structure for kinsol.

KINMalloc allocates and initializes memory for kinsol.
KINSol solves the nonlinear problem.

KINGetStats returns statistics for the kinsol solver.
KINFree deallocates memory for the kinsol solver.

F
u
n
ct
io
n
ty
p
es KINSysFn system function

KINDenseJacFn dense Jacobian function
KINJactimesVecFn Jacobian times vector function
KINPrecSetupFn preconditioner setup function
KINPrecSolveFn preconditioner solve function

KINGlocalFn system approximation function (BBDPre)
KINGcommFn communication function (BBDPre)

38

3.1 Interface functions

KINSetOptions

Purpose

KINSetOptions creates an options structure for KINSOL.

Synopsis

function options = KINSetOptions(varargin)

Description

KINSetOptions creates an options structure for KINSOL.

Usage:

options = KINSetOptions(’NAME1’,VALUE1,’NAME2’,VALUE2,...) creates a KINSOL

options structure options in which the named properties have the

specified values. Any unspecified properties have default values. It is

sufficient to type only the leading characters that uniquely identify the

property. Case is ignored for property names.

options = KINSetOptions(oldoptions,’NAME1’,VALUE1,...) alters an existing

options structure oldoptions.

options = KINSetOptions(oldoptions,newoptions) combines an existing options

structure oldoptions with a new options structure newoptions. Any new

properties overwrite corresponding old properties.

KINSetOptions with no input arguments displays all property names and their

possible values.

KINSetOptions properties

(See also the KINSOL User Guide)

MaxNumIter - maximum number of nonlinear iterations [scalar | 200]

Specifies the maximum number of iterations that the nonlinar solver is allowed

to take.

MaxNumSetups - [scalar | 10]

Specifies the maximum number of nonlinear iterations between calls to the

linear solver setup function (i.e. preconditioner evaluation for an iterative

linear solver).

MaxNumBetaFails - maximum number of beta-condition failures [scalar | 10]

Specifies the maximum number of beta-condiiton failures in the line search

algorithm.

EtaForm - Inexact Newton method [Constant | Type2 | Type1]

Specifies the method for computing the eta coefficient used in the calculation

of the linear solver convergence tolerance (used only if strategy=’InexactNEwton’

in the call to KINSol):

lintol = (eta + eps)*||fscale*f(y)||_L2

which is the used to check if the following inequality is satisfied:

39

||fscale*(f(y)+J(y)*p)||_L2 <= lintol

Valid choices are:

| ||f(y_(k+1))||_L2 - ||f(y_k)+J(y_k)*p_k||_L2 |

EtaForm=’Type1’ eta = --

||f(y_k)||_L2

[||f(y_(k+1))||_L2]^alpha

EtaForm=’Type2’ eta = gamma * [-----------------]

[||f(y_k)||_L2]

EtaForm=’Constant’

Eta - constant value for eta [scalar | 0.1]

Specifies the constant value for eta in the case EtaForm=’Constant’.

EtaAlpha - alpha parameter for eta [scalar | 2.0]

Specifies the parameter alpha in the case EtaForm=’Type2’

EtaGamma - gamma parameter for eta [scalar | 0.9]

Specifies the parameter gamma in the case EtaForm=’Type2’

MaxNewtonStep - maximum Newton step size [scalar | 0.0]

Specifies the maximum allowable value of the scaled length of the Newton step.

FuncRelErr - relative residual error [scalar | eps]

Specifies the realative error in computing f(y) when used in difference

quotient approximation of matrix-vector product J(y)*v.

FuncNormTol - residual stopping criteria [scalar | eps^(1/3)]

Specifies the stopping tolerance on ||fscale*ABS(f(y))||_L-infinity

ScaledStepTol - step size stopping criteria [scalar | eps^(2/3)]

Specifies the stopping tolerance on the maximum scaled step length:

|| y_(k+1) - y_k ||

|| ------------------ ||_L-infinity

|| |y_(k+1)| + yscale ||

InitialSetup - initial call to linear solver setup [false | true]

Specifies whether or not KINSol makes an initial call to the linear solver

setup function.

MinBoundEps - lower bound on eps [false | true]

Specifies whether or not the value of eps is bounded below by 0.01*FuncNormtol.

Constraints - solution constraints [vector]

Specifies additional constraints on the solution components.

Constraints(i) = 0 : no constrain on y(i)

Constraints(i) = 1 : y(i) >= 0

Constraints(i) = -1 : y(i) <= 0

Constraints(i) = 2 : y(i) > 0

Constraints(i) = -2 : y(i) < 0

If Constraints is not specified, no constraints are applied to y.

LinearSolver - Type of linear solver used [Dense | BiCGStab | GMRES]

Specifies the type of linear solver to be used for the Newton nonlinear solver.

Valid choices are: Dense (direct, dense Jacobian), GMRES (iterative, scaled

preconditioned GMRES), BiCGStab (iterative, scaled preconditioned stabilized

BiCG). The GMRES and BiCGStab are matrix-free linear solvers.

JacobianFn - Jacobian function [function]

This propeerty is overloaded. Set this value to a function that returns

Jacobian information consistent with the linear solver used (see Linsolver).

If not specified, KINSOL uses difference quotient approximations.

For the Dense linear solver, JacobianFn must be of type KINDenseJacFn and must

return a dense Jacobian matrix. For the iterative linear solvers, GMRES and

BiCGStab, JacobianFn must be of type KINJactimesVecFn and must return a

40

Jacobian-vector product.

PrecModule - Built-in preconditioner module [BBDPre | UserDefined]

If the PrecModule = ’UserDefined’, then the user must provide at least a

preconditioner solve function (see PrecSolveFn)

KINSOL provides a built-in preconditioner module, BBDPre which can only be used

with parallel vectors. It provide a preconditioner matrix that is block-diagonal

with banded blocks. The blocking corresponds to the distribution of the variable

vector among the processors. Each preconditioner block is generated from the

Jacobian of the local part (on the current processor) of a given function g(t,y)

approximating f(y) (see GlocalFn). The blocks are generated by a difference

quotient scheme on each processor independently. This scheme utilizes an assumed

banded structure with given half-bandwidths, mldq and mudq (specified through

LowerBwidthDQ and UpperBwidthDQ, respectively). However, the banded Jacobian

block kept by the scheme has half-bandwiths ml and mu (specified through

LowerBwidth and UpperBwidth), which may be smaller.

PrecSetupFn - Preconditioner setup function [function]

PrecSetupFn specifies an optional function which, together with PrecSolve,

defines a right preconditioner matrix which is an aproximation

to the Newton matrix. PrecSetupFn must be of type KINPrecSetupFn.

PrecSolveFn - Preconditioner solve function [function]

PrecSolveFn specifies an optional function which must solve a linear system

Pz = r, for given r. If PrecSolveFn is not defined, the no preconditioning will

be used. PrecSolveFn must be of type KINPrecSolveFn.

GlocalFn - Local right-hand side approximation funciton for BBDPre [function]

If PrecModule is BBDPre, GlocalFn specifies a required function that

evaluates a local approximation to the system function. GlocalFn must

be of type KINGlocalFn.

GcommFn - Inter-process communication function for BBDPre [function]

If PrecModule is BBDPre, GcommFn specifies an optional function

to perform any inter-process communication required for the evaluation of

GlocalFn. GcommFn must be of type KINGcommFn.

KrylovMaxDim - Maximum number of Krylov subspace vectors [scalar | 10]

Specifies the maximum number of vectors in the Krylov subspace. This property

is used only if an iterative linear solver, GMRES or BiCGStab, is used

(see LinSolver).

MaxNumRestarts - Maximum number of GMRES restarts [scalar | 0]

Specifies the maximum number of times the GMRES (see LinearSolver) solver

can be restarted.

LowerBwidthDQ - BBDPre preconditioner DQ lower bandwidth [scalar | 0]

Specifies the lower half-bandwidth used in the difference-quotient Jacobian

approximation for the BBDPre preconditioner (see PrecModule).

UpperBwidthDQ - BBDPre preconditioner DQ upper bandwidth [scalar | 0]

Specifies the upper half-bandwidth used in the difference-quotient Jacobian

approximation for the BBDPre preconditioner (see PrecModule).

LowerBwidth - BBDPre preconditioner lower bandwidth [scalar | 0]

If one of the two iterative linear solvers, GMRES or BiCGStab, is used

(see LinSolver) and if the BBDPre preconditioner module in KINSOL is used

(see PrecModule), it specifies the lower half-bandwidth of the retained banded

approximation of the local Jacobian block.

UpperBwidth - BBDPre preconditioner upper bandwidth [scalar | 0]

If one of the two iterative linear solvers, GMRES or BiCGStab, is used

(see LinSolver) and if the BBDPre preconditioner module in KINSOL is used

(see PrecModule), it specifies the upper half-bandwidth of the retained banded

approximation of the local Jacobian block.

41

See also

KINDenseJacFn, KINJacTimesVecFn

KINPrecSetupFn, KINPrecSolveFn

KINGlocalFn, KINGcommFn

KINMalloc

Purpose

KINMalloc allocates and initializes memory for KINSOL.

Synopsis

function [] = KINMalloc(fct,n,varargin)

Description

KINMalloc allocates and initializes memory for KINSOL.

Usage: KINMalloc (SYSFUN, N [, OPTIONS [, DATA]]);

SYSFUN is a function defining the nonlinearproblem f(y) = 0.

This function must return a column vector FY containing the

current value of the residual

N is the problem dimension.

OPTIONS is an (optional) set of integration options, created with

the KINSetOptions function.

DATA is (optional) problem data passed unmodified to all

user-provided functions when they are called. For example,

RES = SYSFUN(Y,DATA).

See also: KINSysFn

KINSol

Purpose

KINSol solves the nonlinear problem.

Synopsis

function [status,y] = KINSol(y0, strategy, yscale, fscale)

Description

KINSol solves the nonlinear problem.

Usage: [STATUS, Y] = KINSol(Y0, STRATEGY, YSCALE, FSCALE)

KINSol manages the computational process of computing an approximate

solution of the nonlinear system. If the initial guess (initial value

assigned to vector Y0) doesn’t violate any user-defined constraints,

42

then KINSol attempts to solve the system f(y)=0. If an iterative linear

solver was specified (see KINSetOptions), KINSol uses a nonlinear Krylov

subspace projection method. The Newton-Krylov iterations are stopped

if either of the following conditions is satisfied:

||f(y)||_L-infinity <= 0.01*fnormtol

||y[i+1] - y[i]||_L-infinity <= scsteptol

However, if the current iterate satisfies the second stopping

criterion, it doesn’t necessarily mean an approximate solution

has been found since the algorithm may have stalled, or the

user-specified step tolerance may be too large.

STRATEGY specifies the global strategy applied to the Newton step if it is

unsatisfactory. Valid choices are ’None’ or ’LineSearch’.

YSCALE is a vector containing diagonal elements of scaling matrix for vector

Y chosen so that the components of YSCALE*Y (as a matrix multiplication) all

have about the same magnitude when Y is close to a root of f(y)

FSCALE is a vector containing diagonal elements of scaling matrix for f(y)

chosen so that the components of FSCALE*f(Y) (as a matrix multiplication)

all have roughly the same magnitude when u is not too near a root of f(y)

On return, status is one of the following:

0: KINSol succeeded

1: The initial y0 already satisfies the stopping criterion given above

2: Stopping tolerance on scaled step length satisfied

-1: Illegal attempt to call before KINMalloc

-2: One of the inputs to KINSol is illegal.

-5: The line search algorithm was unable to find an iterate sufficiently

distinct from the current iterate

-6: The maximum number of nonlinear iterations has been reached

-7: Five consecutive steps have been taken that satisfy the following

inequality:

||yscale*p||_L2 > 0.99*mxnewtstep

-8: The line search algorithm failed to satisfy the beta-condition

for too many times.

-9: The linear solver’s solve routine failed in a recoverable manner,

but the linear solver is up to date.

-10: The linear solver’s intialization routine failed.

-11: The linear solver’s setup routine failed in an unrecoverable manner.

-12: The linear solver’s solve routine failed in an unrecoverable manner.

See also KINSetOptions, KINGetstats

KINGetStats

Purpose

KINGetStats returns statistics for the main KINSOL solver and the linear

Synopsis

function si = KINGetStats()

Description

43

KINGetStats returns statistics for the main KINSOL solver and the linear

solver used.

Usage: solver_stats = KINGetStats;

Fields in the structure solver_stats

o nfe - total number evaluations of the nonlinear system function SYSFUN

o nni - total number of nonlinear iterations

o nbcf - total number of beta-condition failures

o nbops - total number of backtrack operations (step length adjustments)

performed by the line search algorithm

o fnorm - scaled norm of the nonlinear system function f(y) evaluated at the

current iterate: ||fscale*f(y)||_L2

o step - scaled norm (or length) of the step used during the previous

iteration: ||uscale*p||_L2

o LSInfo - structure with linear solver statistics

The structure LSinfo has different fields, depending on the linear solver used.

Fields in LSinfo for the ’Dense’ linear solver

o name - ’Dense’

o njeD - number of Jacobian evaluations

o nfeD - number of right-hand side function evaluations for difference-quotient

Jacobian approximation

Fields in LSinfo for the ’GMRES’ or ’BiCGStab’ linear solver

o name - ’GMRES’ or ’BiCGStab’

o nli - number of linear solver iterations

o npe - number of preconditioner setups

o nps - number of preconditioner solve function calls

o ncfl - number of linear system convergence test failures

KINFree

Purpose

KINFree deallocates memory for the KINSOL solver.

Synopsis

function [] = KINFree()

Description

KINFree deallocates memory for the KINSOL solver.

Usage: KINFree

44

3.2 Function types

KINDenseJacFn

Purpose

KINDenseJacFn - type for user provided dense Jacobian function.

Synopsis

This is a script file.

Description

KINDenseJacFn - type for user provided dense Jacobian function.

The function DJACFUN must be defined as

FUNCTION [J, IER] = DJACFUN(Y,FY)

and must return a matrix J corresponding to the Jacobian of f(y).

The input argument FY contains the current value of f(y).

If successful, IER should be set to 0. If an error occurs, IER should

be set to a nonzero value.

If a user data structure DATA was specified in KINMalloc, then

DJACFUN must be defined as

FUNCTION [J, IER, NEW_DATA] = DJACFUN(Y,FY,DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the matrix J and

the flag IER, the DJACFUN function must also set NEW_DATA. Otherwise,

it should set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead

to unnecessary copying).

See also KINSetOptions

NOTE: DJACFUN is specified through the property JacobianFn to KINSetOptions

and is used only if the property LinearSolver was set to ’Dense’.

KINGcommFn

Purpose

KINGcommFn - type for user provided communication function (BBDPre).

Synopsis

This is a script file.

Description

KINGcommFn - type for user provided communication function (BBDPre).

The function GCOMFUN must be defined as

FUNCTION [] = GCOMFUN(Y)

and can be used to perform all interprocess communication necessary

to evaluate the approximate right-hand side function for the BBDPre

45

preconditioner module.

If a user data structure DATA was specified in KINMalloc, then

GCOMFUN must be defined as

FUNCTION [NEW_DATA] = GCOMFUN(Y,DATA)

If the local modifications to the user data structure are needed

in other user-provided functions then the GCOMFUN function must also

set NEW_DATA. Otherwise, it should set NEW_DATA=[] (do not set

NEW_DATA = DATA as it would lead to unnecessary copying).

See also KINGlocalFn, KINSetOptions

NOTES:

GCOMFUN is specified through the GcommFn property in KINSetOptions

and is used only if the property PrecModule is set to ’BBDPre’.

Each call to GCOMFUN is preceded by a call to the system function

SYSFUN with the same argument Y. Thus GCOMFUN can omit any communication

done by SYSFUN if relevant to the evaluation of G by GLOCFUN. If all

necessary communication was done by SYSFUN, GCOMFUN need not be provided.

KINGlocalFn

Purpose

KINGlocalFn - type for user provided RHS approximation function (BBDPre).

Synopsis

This is a script file.

Description

KINGlocalFn - type for user provided RHS approximation function (BBDPre).

The function GLOCFUN must be defined as

FUNCTION G = GLOCFUN(Y)

and must return a vector G corresponding to an approximation to f(y)

which will be used in the BBDPRE preconditioner module. The case where

G is mathematically identical to F is allowed.

If a user data structure DATA was specified in KINMalloc, then

GLOCFUN must be defined as

FUNCTION [G, NEW_DATA] = GLOCFUN(Y,DATA)

If the local modifications to the user data structure are needed

in other user-provided functions then, besides setting the vector G,

the GLOCFUN function must also set NEW_DATA. Otherwise, it should set

NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to

unnecessary copying).

See also KINGcommFn, KINSetOptions

NOTE: GLOCFUN is specified through the GlocalFn property in KINSetOptions

and is used only if the property PrecModule is set to ’BBDPre’.

46

KINJacTimesVecFn

Purpose

KINJacTimesVecFn - type for user provided Jacobian times vector function.

Synopsis

This is a script file.

Description

KINJacTimesVecFn - type for user provided Jacobian times vector function.

The function JTVFUN must be defined as

FUNCTION [JV, FLAG, IER] = JTVFUN(Y,V,FLAG)

and must return a vector JV corresponding to the product of the

Jacobian of f(y) with the vector v. On input, FLAG indicates if

the iterate has been updated in the interim. JV must be update

or reevaluated, if appropriate, unless FLAG=false. This flag must

be reset by the user.

If successful, IER should be set to 0. If an error occurs, IER should

be set to a nonzero value.

If a user data structure DATA was specified in KINMalloc, then

JTVFUN must be defined as

FUNCTION [JV, FLAG, IER, NEW_DATA] = JTVFUN(Y,V,FLAG,DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the vector JV, and

flags FLAG and IER, the JTVFUN function must also set NEW_DATA. Otherwise,

it should set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to

unnecessary copying).

See also KINSetOptions

NOTE: JTVFUN is specified through the property JacobianFn to KINSetOptions

and is used only if the property LinearSolver was set to ’GMRES’ or ’BiCGStab’.

KINPrecSetupFn

Purpose

KINPrecSetupFn - type for user provided preconditioner setup function.

Synopsis

This is a script file.

Description

KINPrecSetupFn - type for user provided preconditioner setup function.

The user-supplied preconditioner setup subroutine should compute

the right-preconditioner matrix P used to form the scaled preconditioned

linear system:

47

(Df*J(y)*(P^-1)*(Dy^-1)) * (Dy*P*x) = Df*(-F(y))

where Dy and Df denote the diagonal scaling matrices whose diagonal elements

are stored in the vectors YSCALE and FSCALE, respectively.

The preconditioner setup routine (referenced by iterative linear

solver modules via pset (type KINSpilsPrecSetupFn)) will not be

called prior to every call made to the psolve function, but will

instead be called only as often as necessary to achieve convergence

of the Newton iteration.

Note: If the PRECSOLVE function requires no preparation, then a

preconditioner setup function need not be given.

The function PSETFUN must be defined as

FUNCTION [IER] = PSETFUN(Y,YSCALE,FY,FSCALE)

If successful, PSETFUN must return IER=0. If an error occurs, then IER

must be set to a non-zero value.

The input argument FY contains the current value of f(y), while YSCALE

and FSCALE are the scaling vectors for solution and system function,

respectively (as passed to KINSol)

If a user data structure DATA was specified in KINMalloc, then

PSETFUN must be defined as

FUNCTION [IER, NEW_DATA] = PSETFUN(Y,YSCALE,FY,FSCALE,DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the flag IER,

the PSETFUN function must also set NEW_DATA. Otherwise, it should

set NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead

to unnecessary copying).

See also KINPrecSolveFn, KINSetOptions, KINSol

NOTE: PSETFUN is specified through the property PrecSetupFn to KINSetOptions

and is used only if the property LinearSolver was set to ’GMRES’ or ’BiCGStab’.

KINPrecSolveFn

Purpose

KINPrecSolveFn - type for user provided preconditioner solve function.

Synopsis

This is a script file.

Description

KINPrecSolveFn - type for user provided preconditioner solve function.

The user-supplied preconditioner solve function PSOLFN

is to solve a linear system P z = r in which the matrix P is

the preconditioner matrix (possibly set implicitely by PSETFUN)

48

The function PSOLFUN must be defined as

FUNCTION [Z,IER] = PSOLFUN(Y,YSCALE,FY,FSCALE,R)

and must return a vector Z containing the solution of Pz=r.

If successful, PSOLFUN must return IER=0. If an error occurs, then IER

must be set to a non-zero value.

The input argument FY contains the current value of f(y), while YSCALE

and FSCALE are the scaling vectors for solution and system function,

respectively (as passed to KINSol)

If a user data structure DATA was specified in KINMalloc, then

PSOLFUN must be defined as

FUNCTION [Z, IER, NEW_DATA] = PSOLFUN(Y,YSCALE,FY,FSCALE,R,DATA)

If the local modifications to the user data structure are needed in

other user-provided functions then, besides setting the vector Z and

the flag IER, the PSOLFUN function must also set NEW_DATA. Otherwise,

it should set NEW_DATA=[] (do not set NEW_DATA = DATA as it would

lead to unnecessary copying).

See also KINPrecSetupFn, KINSetOptions

NOTE: PSOLFUN is specified through the property PrecSolveFn to KINSetOptions

and is used only if the property LinearSolver was set to ’GMRES’ or ’BiCGStab’.

KINSysFn

Purpose

KINSysFn - type for user provided system function

Synopsis

This is a script file.

Description

KINSysFn - type for user provided system function

The function SYSFUN must be defined as

FUNCTION FY = SYSFUN(Y)

and must return a vector FY corresponding to f(y).

If a user data structure DATA was specified in KINMalloc, then

SYSFUN must be defined as

FUNCTION [FY, NEW_DATA] = SYSFUN(Y,DATA)

If the local modifications to the user data structure are needed

in other user-provided functions then, besides setting the vector FY,

the SYSFUN function must also set NEW_DATA. Otherwise, it should set

NEW_DATA=[] (do not set NEW_DATA = DATA as it would lead to

unnecessary copying).

See also KINMalloc

NOTE: SYSFUN is specified through the KINMalloc function.

49

4 Supporting modules

This section describes two additional modules in sundialsTB, nvector and putils. The functions
in nvector perform various operations on vectors. For serial vectors, all of these operations default
to the corresponding matlab functions. For parallel vectors, they can be used either on the local
portion of the distributed vector or on the global vector (in which case they will trigger an MPI
Allreduce operation). The functions in putils are used to run parallel sundialsTB applications.
The user should only call the function mpirun to launch a parallel matlab application. See one of
the paralel sundialsTB examples for usage.

The functions in these two additional modules are listed in Table 3 and described in detail in
the remainder of this section.

Table 3: The nvector and putils functions

n
v
e
c
t
o
r

N VMax returns the largest element of x
N VMaxNorm returns the maximum norm of x

N VMin returns the smallest element of x
N VDotProd returns the dot product of two vectors

N VWrmsNorm returns the weighted root mean square norm of x
N VWL2Norm returns the weighted Euclidean L2 norm of x
N VL1Norm returns the L1 norm of x

p
u
t
il

s mpirun runs parallel examples
mpiruns runs the parallel example on a child matlab process

LAM Start lamboot and MPI Init master (if required)
LAM Finish clean mpiTB mex files from memory

50

4.1 nvector functions

N_VDotProd

Purpose

N_VDotProd returns the dot product of two vectors

Synopsis

function ret = N_VDotProd(x,y,comm)

Description

N_VDotProd returns the dot product of two vectors

Usage: RET = N_VDotProd (X, Y [, COMM])

If COMM is not present, N_VDotProd returns the dot product of the

local portions of X and Y. Otherwise, it returns the global dot

product.

Source Code

1 f unc t i on r e t = N VDotProd (x , y ,comm)
9

10 % Radu Serban <radu@l ln l . gov>
11 % Copyright (c) 2005 , The Regents o f the Un ive r s i ty o f Ca l i f o r n i a .
12 % $Revis ion$Date$
13

14

15 i f narg in == 2
16

17 r e t = dot (x , y) ;
18

19 e l s e
20

21 l do t = dot (x , y) ;
22 gdot = 0 . 0 ;
23 MPI Allreduce (ldot , gdot , ’SUM’ ,comm) ;
24 r e t = gdot ;
25

26 end

N_VL1Norm

Purpose

N_VL1Norm returns the L1 norm of x

Synopsis

function ret = N_VL1Norm(x,comm)

Description

51

N_VL1Norm returns the L1 norm of x

Usage: RET = N_VL1Norm (X [, COMM])

If COMM is not present, N_VL1Norm returns the L1 norm of

the local portion of X. Otherwise, it returns the global

L1 norm..

Source Code

1 f unc t i on r e t = N VL1Norm(x ,comm)
9

10 % Radu Serban <radu@l ln l . gov>
11 % Copyright (c) 2005 , The Regents o f the Un ive r s i ty o f Ca l i f o r n i a .
12 % $Revis ion$Date$
13

14 i f narg in == 1
15

16 r e t = norm(x , 1) ;
17

18 e l s e
19

20 lnrm = norm(x , 1) ;
21 gnrm = 0 . 0 ;
22 MPI Allreduce (lnrm , gnrm , ’MAX’ ,comm) ;
23 r e t = gnrm ;
24

25 end

N_VMax

Purpose

N_VMax returns the largest element of x

Synopsis

function ret = N_VMax(x,comm)

Description

N_VMax returns the largest element of x

Usage: RET = N_VMax (X [, COMM])

If COMM is not present, N_VMax returns the maximum value of

the local portion of X. Otherwise, it returns the global

maximum value.

Source Code

1 f unc t i on r e t = N VMax(x ,comm)
9

10 % Radu Serban <radu@l ln l . gov>
11 % Copyright (c) 2005 , The Regents o f the Un ive r s i ty o f Ca l i f o r n i a .
12 % $Revis ion$Date$

52

13

14 i f narg in == 1
15

16 r e t = max(x) ;
17

18 e l s e
19

20 lmax = max(x) ;
21 gmax = 0 . 0 ;
22 MPI Allreduce (lmax , gmax , ’MAX’ ,comm) ;
23 r e t = gmax ;
24

25 end

N_VMaxNorm

Purpose

N_VMaxNorm returns the L-infinity norm of x

Synopsis

function ret = N_VMaxNorm(x, comm)

Description

N_VMaxNorm returns the L-infinity norm of x

Usage: RET = N_VMaxNorm (X [, COMM])

If COMM is not present, N_VMaxNorm returns the L-infinity norm

of the local portion of X. Otherwise, it returns the global

L-infinity norm..

Source Code

1 f unc t i on r e t = N VMaxNorm(x , comm)
9

10 % Radu Serban <radu@l ln l . gov>
11 % Copyright (c) 2005 , The Regents o f the Un ive r s i ty o f Ca l i f o r n i a .
12 % $Revis ion$Date$
13

14 i f narg in == 1
15

16 r e t = norm(x , ’ i n f ’) ;
17

18 e l s e
19

20 lnrm = norm(x , ’ i n f ’) ;
21 gnrm = 0 . 0 ;
22 MPI Allreduce (lnrm , gnrm , ’MAX’ ,comm) ;
23 r e t = gnrm ;
24

25 end

53

N_VMin

Purpose

N_VMin returns the smallest element of x

Synopsis

function ret = N_VMin(x,comm)

Description

N_VMin returns the smallest element of x

Usage: RET = N_VMin (X [, COMM])

If COMM is not present, N_VMin returns the minimum value of

the local portion of X. Otherwise, it returns the global

minimum value.

Source Code

1 f unc t i on r e t = N VMin(x ,comm)
8

9 % Radu Serban <radu@l ln l . gov>
10 % Copyright (c) 2005 , The Regents o f the Un ive r s i ty o f Ca l i f o r n i a .
11 % $Revis ion$Date$
12

13 i f narg in == 1
14

15 r e t = min (x) ;
16

17 e l s e
18

19 lmin = min (x) ;
20 gmin = 0 . 0 ;
21 MPI Allreduce (lmin , gmin , ’MIN ’ ,comm) ;
22 r e t = gmin ;
23

24 end

N_VWL2Norm

Purpose

N_VWL2Norm returns the weighted Euclidean L2 norm of x

Synopsis

function ret = N_VWL2Norm(x,w,comm)

Description

54

N_VWL2Norm returns the weighted Euclidean L2 norm of x

with weight vector w:

sqrt [(sum (i = 0 to N-1) (x[i]*w[i])^2)]

Usage: RET = N_VWL2Norm (X, W [, COMM])

If COMM is not present, N_VWL2Norm returns the weighted L2

norm of the local portion of X. Otherwise, it returns the

global weighted L2 norm..

Source Code

1 f unc t i on r e t = N VWL2Norm(x ,w,comm)
11

12 % Radu Serban <radu@l ln l . gov>
13 % Copyright (c) 2005 , The Regents o f the Un ive r s i ty o f Ca l i f o r n i a .
14 % $Revis ion$Date$
15

16 i f narg in == 2
17

18 r e t = dot (x . ˆ 2 ,w. ˆ 2) ;
19 r e t = sq r t (r e t) ;
20

21 e l s e
22

23 lnrm = dot (x . ˆ 2 ,w. ˆ 2) ;
24 gnrm = 0 . 0 ;
25 MPI Allreduce (lnrm , gnrm , ’SUM’ ,comm) ;
26

27 r e t = sq r t (gnrm) ;
28

29 end

N_VWrmsNorm

Purpose

N_VWrmsNorm returns the weighted root mean square norm of x

Synopsis

function ret = N_VWrmsNorm(x,w,comm)

Description

N_VWrmsNorm returns the weighted root mean square norm of x

with weight vector w:

sqrt [(sum (i = 0 to N-1) (x[i]*w[i])^2)/N]

Usage: RET = N_VWrmsNorm (X, W [, COMM])

If COMM is not present, N_VWrmsNorm returns the WRMS norm

of the local portion of X. Otherwise, it returns the global

WRMS norm..

Source Code

55

1 f unc t i on r e t = N VWrmsNorm(x ,w,comm)
11

12 % Radu Serban <radu@l ln l . gov>
13 % Copyright (c) 2005 , The Regents o f the Un ive r s i ty o f Ca l i f o r n i a .
14 % $Revis ion$Date$
15

16 i f narg in == 2
17

18 r e t = dot (x . ˆ 2 ,w. ˆ 2) ;
19 r e t = sq r t (r e t / l ength (x)) ;
20

21 e l s e
22

23 lnrm = dot (x . ˆ 2 ,w. ˆ 2) ;
24 gnrm = 0 . 0 ;
25 MPI Allreduce (lnrm , gnrm , ’SUM’ ,comm) ;
26

27 ln = length (x) ;
28 gn = 0 ;
29 MPI Allreduce (ln , gn , ’SUM’ ,comm) ;
30

31 r e t = sq r t (gnrm/gn) ;
32

33 end

56

4.2 Parallel utilities

mpirun

Purpose

mpirun runs parallel examples.

Synopsis

function [] = mpirun(fct,npe,dbg)

Description

mpirun runs parallel examples.

Usage: mpirun (FCT , NPE [, DBG])

FCT - name (or handle) of the function to be executed on all MATLAB

processes.

NPE - number of processes to be used (including the master).

DBG - flag for debugging. If true, spawn MATLAB child processes

with a visible xterm. (default DBG=false)

Source Code

1 f unc t i on [] = mpirun (f c t , npe , dbg)
11

12 % Radu Serban <radu@l ln l . gov>
13 % Copyright (c) 2005 , The Regents o f the Un ive r s i ty o f Ca l i f o r n i a .
14 % $Revis ion$Date$
15

16 ih = i s a (f c t , ’ f unc t i on hand l e ’) ;
17 i s = i s a (f c t , ’ char ’) ;
18 i f ih
19 sh = func t i on s (f c t) ;
20 f c t s t r = sh . func t i on ;
21 e l s e i f i s
22 f c t s t r = f c t ;
23 e l s e
24 e r r o r (’mpirun : : Unrecognized func t i on ’) ;
25 end
26

27 i f e x i s t (f c t s t r) ˜= 2
28 err msg = s p r i n t f (’mpirun : : Function %s not in search path . ’ , f c t s t r) ;
29 e r r o r (err msg) ;
30 end
31

32 ns l ave s = npe−1;
33 LAM Start (n s l ave s) ;
34

35 debug = f a l s e ;
36 i f (narg in > 2) & dbg
37 debug = true ;

57

38 end
39

40 cmd slaves = s p r i n t f (’ mpiruns (’ ’%s ’ ’) ’ , f c t s t r) ;
41

42 i f debug
43 cmd = ’ xterm ’ ;
44 args = { ’−e ’ , ’ matlab ’ , ’−nosp lash ’ , ’−nojvm ’ , ’−r ’ , cmd s laves } ;
45 e l s e
46 cmd = ’matlab ’ ;
47 args = { ’−nosp lash ’ , ’−nojvm ’ , ’−r ’ , cmd s laves } ;
48 end
49

50 [i n f o ch i l d r en e r r s] = MPI Comm spawn(cmd , args , ns laves , ’NULL ’ ,0 , ’SELF ’) ;
51

52 [i n f o NEWORLD] = MPI Intercomm merge (ch i ld r en , 0) ;
53

54 nvm(1 ,NEWORLD) ;
55 f e v a l (f c t ,NEWORLD) ;
56 nvm(2) ;
57

58 LAM Finish ;

mpiruns

Purpose

mpiruns runs the parallel example on a child MATLAB process.

Synopsis

function [] = mpiruns(fct)

Description

mpiruns runs the parallel example on a child MATLAB process.

This function should not be called directly. It is called

by mpirun on the spawned child processes.

Source Code

1 f unc t i on [] = mpiruns (f c t)
5

6 % Radu Serban <radu@l ln l . gov>
7 % Copyright (c) 2005 , The Regents o f the Un ive r s i ty o f Ca l i f o r n i a .
8 % $Revis ion$Date$
9

10 [dum hostname]=system (’ hostname ’) ;
11 f p r i n t f (’ c h i l d MATLAB proce s s on %s \n ’ , hostname) ;
12

13 MPI Init ;
14

15 MPI Errhandler set (’WORLD’ , ’RETURN’) ;
16

17 [i n f o parent] = MPI Comm get parent ;
18

58

19 f p r i n t f (’ wa i t ing f o r the parent to merge MPI intercommunicators . . . ’) ;
20 [i n f o NEWORLD] = MPI Intercomm merge (parent , 1) ;
21 f p r i n t f (’OK!\n ’) ;
22

23 MPI Errhandler set (NEWORLD, ’RETURN’) ;
24

25 nvm(1 ,NEWORLD) ;
26 f e v a l (f c t ,NEWORLD) ;
27 nvm(2) ;
28

29 MPI Final ize ;
30 LAM Finish ;

LAM_Finish

Purpose

LAM_Finish cleans MPITB MEX files from memory.

Synopsis

function LAM_Finish

Description

LAM_Finish cleans MPITB MEX files from memory.

Most probably used in the following sequence:

MPI_Init

...

<MPITB code>

...

MPI_Finalize;

LAM_Clean; % required to avoid

MPI_Init; % matlab crash due to MPI re-init

See MPI_Init help page for more details

Source Code

1 f unc t i on LAM Finish
15

16 [M, MEX] = inmem ; % c l e a r a l l MPI ∗ MEX f i l e s
17 M = MEX(strmatch (’MPI ’ ,MEX)) ;
18 c l e a r (M{ :}) % al low f o r MPI Init again

LAM_Start

Purpose

LAM_Start invokes lamboot (if required) and MPI_Init (if required).

Synopsis

function LAM_Start(nslaves, rpi, hosts)

Description

59

LAM_Start invokes lamboot (if required) and MPI_Init (if required).

Usage: LAM_Init [(NSLAVES [, RPI [, HOSTS]])]

LAM_Start boots LAM and initializes MPI to match a given number of slave

hosts (and rpi) from a given list of hosts. All three args optional.

If they are not defined, HOSTS are taken from a builtin HOSTS list

(edit HOSTS at the beginning of LAM_Start.m to match your cluster)

or from the bhost file if defined through LAMBHOST (in this order).

If not defined, RPI is taken from the builtin variable RPI (edit it

to suit your needs) or from the LAM_MPI_SSI_rpi environment variable

(in this order).

Source Code

1 f unc t i on LAM Start (ns laves , rp i , hos t s)
16

17 % Heavi ly based on the LAM Init func t i on in MPITB.
18

19 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20 % DEFAULT VALUES %
21 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
22

23 HOSTS = { ’ tux30 ’ , ’ tux76 ’ , ’ tux105 ’ , ’ tux111 ’ } ;
24 RPI = ’ tcp ’ ;
25

26 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
27 % ARGCHECK
28 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
29

30 %% Li s t o f hos t s
31

32 i f nargin>2
33 % host s passed as an argument . . .
34 i f ˜ i s c e l l (hos t s)
35 e r r o r (’ LAM Init : 3 rd arg i s not a c e l l ’) ;
36 e l s e
37 f o r i =1: l ength (hos t s)
38 i f ˜ i s c h a r (hos t s { i })
39 e r r o r (’ LAM Init : 3 rd arg i s not c e l l−of−s t r i n g s ’) ;
40 end
41 end
42 end
43 e l s e
44 % We must get the hos t s from somewhere e l s e . . .
45 i f ˜ isempty (HOSTS)
46 hos t s = HOSTS; % Var iab le HOSTS de f ined above
47 e l s e
48 b f i l e = getenv (’LAMBHOST’) ;
49 i f ˜ isempty (b f i l e)
50 hos t s = readHosts (b f i l e) ; % bhost de f ined in environment
51 e l s e
52 % Cannot d e f i n e hos t s !

60

53 e r r o r (’ LAM Init : : cannot f i nd l i s t o f hos t s ’) ;
54 end
55 end
56 end
57

58 %% RPI
59

60 i f nargin>1
61 % RPI passed as an argument
62 i f ˜ i s c h a r (rp i)
63 e r r o r (’ LAM Init : 2nd arg i s not a s t r i n g ’)
64 e l s e
65 % f u l l r p i name , i f s i n g l e l e t t e r used
66 r p i=r p i s t r (r p i) ;
67 i f isempty (rp i)
68 e r r o r (’ LAM Init : 2nd arg i s not a known RPI ’)
69 end
70 end
71 e l s e
72 % We must get RPI from somewhere e l s e . . .
73 i f ˜ isempty (RPI)
74 r p i = r p i s t r (RPI) ; % Var iab le RPI de f ined above
75 e l s e
76 RPI = getenv (’ LAM MPI SSI rpi ’) ;
77 i f ˜ isempty (RPI)
78 r p i = r p i s t r (RPI) ; % RPI de f ined in environment
79 e l s e
80 e r r o r (’ LAM Init : : cannot f i nd RPI ’) ;
81 end
82 end
83 end
84

85 % Number o f s l a v e s
86

87 i f nargin>0
88 i f ˜ i s r e a l (n s l av e s) | | f i x (n s l av e s)˜=ns l ave s | | ns laves>=length (hos t s)
89 e r r o r (’ LAM Init : 1 s t arg i s not a va l i d #s l a v e s ’)
90 end
91 e l s e
92 ns l ave s = length (hos t s)−1;
93 end
94

95 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
96 % LAMHALT %
97 %−−−
98 % reasons to lamhalt :
99 % − not enough nodes (ns lv+1) % NHL < NSLAVES+1

100 % − l o c a l h o s t not in l i s t % weird − j u s t lamboot (NHL=0)
101 % − l o c a l h o s t not l a s t in l i s t % weird − j u s t lamboot (NHL=0)
102 %−−−
103

104 % Lam Nodes Output
105 [s tat , LNO] = system (’ lamnodes ’) ;
106 i f ˜ s t a t % al ready lambooted

61

107

108 emptyf lag = f a l s e ;
109 i f isempty (LNO)
110 % th i s shouldn ’ t happen
111 emptyf lag=true ;
112 % it ’ s MATLAB’ s f a u l t I th ink
113 f p r i n t f (’ pushing stubborn MATLAB ”system” c a l l (lamnodes) : ’) ;
114 end
115

116 whi le isempty (LNO) | | s t a t
117 f p r i n t f (’ . ’) ;
118 [s tat , LNO] = system (’ lamnodes ’) ;
119 end
120 i f emptyf lag
121 f p r i n t f (’ \n ’) ;
122 end
123

124 LF = char (1 0) ;
125 LNO = s p l i t (LNO,LF) ; % s p l i t l i n e s in rows at \n
126

127 [s tat , NHL] = system (’ lamnodes |wc − l ’) ; % Number o f Hosts in Lamnodes
128

129 emptyf lag = f a l s e ; % again ,
130 i f isempty (NHL) % th i s shouldn ’ t happen
131 emptyf lag=true ; % i t ’ s MATLAB’ s f a u l t I th ink
132 f p r i n t f (’ pushing stubborn MATLAB ”system” c a l l (lamnodes |wc) : ’) ;
133 end
134 whi le isempty (NHL) | | s t a t
135 f p r i n t f (’ . ’) ;
136 [s tat , NHL] = system (’ lamnodes |wc − l ’) ;
137 end
138 i f emptyf lag
139 f p r i n t f (’ \n ’) ;
140 end
141

142 NHL = str2num (NHL) ;
143 i f NHL ˜= s i z e (LNO, 1) | | ˜ NHL>0 % Oh my, l o g i c e r r o r
144 NHL= 0 ; % pretend there are no nodes
145 di sp (’ LAM Init : i n t e r n a l l o g i c e r r o r : lamboot ’)
146 end % to f o r c e lamboot w/o lamhalt
147 i f isempty (f i n d s t r (LNO(end , :) , ’ t h i s node ’)) % master computer l a s t in l i s t
148 di sp (’ LAM Init : l o c a l host i s not l a s t in node l i s t , hope that ’ ’ s r i g h t ’)
149 b e f o r e f l a g =0;
150 f o r i =1: s i z e (LNO, 1)
151 i f ˜ isempty (f i n d s t r (LNO(i , :) , ’ t h i s node ’))
152 b e f o r e f l a g =1;
153 break ; % wel l , not 1 s t but i t ’ s the re
154 end
155 end % we a l ready warned the user
156 i f ˜ b e f o r e f l a g % Oh my, i n c r ed i b l e , not the re
157 NHL= 0 ; % pretend there are no nodes
158 di sp (’ LAM Init : l o c a l host not in LAM? lamboot ’)
159 end
160 end % to f o r c e lamboot w/o lamhalt

62

161

162 i f NHL > 0 % accu ra t e l y account mu l t i p r o c e s s o r s
163 NCL = 0 ; % number o f CPUs in lamnodes
164 f o r i =1: s i z e (LNO, 1) % add the 2nd ”:”− separated
165 f i e l d s=s p l i t (LNO(i , :) , ’ : ’) ; % f i e l d , i e , #CPUs
166 NCL = NCL + str2num (f i e l d s (2 , :)) ;
167 end
168 i f NCL<NHL % Oh my, l o g i c e r r o r
169 NHL= 0 ; % pretend there are no nodes
170 di sp (’ LAM Init : i n t e r n a l l o g i c e r r o r : lamboot ’)
171 e l s e
172 % update count
173 NHL=NCL;
174 end % can ’ t get count from MPI,
175 end % s i n c e might be not I n i t ’ ed
176

177 i f NHL < ns l ave s+1 % we have to lamboot
178

179 % but avoid g e t t i n g caught
180 [i n f I f l g I]=MPI In i t i a l i z e d ; % I n i t ?
181 [in fF f l gF]=MPI Final ized ; % F i n a l i z e ?
182 i f i n f I | | in fF
183 e r r o r (’ LAM Init : e r r o r c a l l i n g I n i t i a l i z e d / F i n a l i z e d ? ’)
184 end
185 i f f l g I && ˜ f l gF % avoid hangup due to
186 MPI Final ize ; % inminent lamhalt
187 c l e a r MPI ∗ % fo r c e MPI Init in Mast/Ping
188 di sp (’ LAM Init : MPI a l r eady used− c l e a r i n g be f o r e lamboot ’)
189 end % by pretend ing ”not I n i t ”
190 i f NHL > 0 % avoid lamhalt in weird ca s e s
191 di sp (’ LAM Init : h a l t i n g LAM’)
192 system (’ lamhalt ’) ; % won ’ t get caught on t h i s
193 end
194 end
195 end
196

197 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
198 % LAMBOOT
199 %−−−
200 % reasons to lamboot : %
201 % − not lambooted yet % s t a t ˜=0
202 % − lamhalted above (or weird) % NHL < NSLAVES+1 (0 i s <)
203 %−−−
204

205 i f s t a t | | NHL<ns l ave s+1
206

207 HNAMS=host s {end } ;
208 f o r i=ns l ave s :−1:1
209 HNAMS=s t r v c a t (hos t s { i } ,HNAMS) ;
210 end
211 HNAMS = HNAMS’ ; % transpose f o r ” f o r ”
212

213 f i d=fopen (’ bhost ’ , ’wt ’) ;
214 f o r h = HNAMS

63

215 f p r i n t f (f i d , ’%s \n ’ ,h ’) ; % wr i t e s l ave s ’ hostnames
216 end
217 f c l o s e (f i d) ;
218 di sp (’ LAM Init : boot ing LAM’)
219

220 s t a t = system (’ lamboot −s −v bhost ’) ;
221

222 i f s t a t % again , t h i s shouldn ’ t happen
223 f p r i n t f (’ pushing stubborn MATLAB ”system” c a l l (lamboot) : ’) ;
224 whi le s t a t
225 f p r i n t f (’ . ’) ; s t a t = system (’ lamboot −s −v bhost ’) ;
226 end
227 f p r i n t f (’ \n ’) ;
228 end
229

230 system (’rm −f bhost ’) ; % don ’ t need bhost anymore
231 end % won ’ t wipe on e x i t / could lamhalt
232

233 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
234 % RPI CHECK
235 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
236

237 [i n f I f l g I] = MPI In i t i a l i z e d ; % I n i t ?
238 [in fF f l gF] = MPI Final ized ; % F i n a l i z e ?
239

240 i f i n f I | | in fF
241 e r r o r (’ LAM Start : e r r o r c a l l i n g I n i t i a l i z e d / F i n a l i z e d ? ’)
242 end
243

244 i f f l g I && ˜ f l gF % Per fect , ready to s t a r t
245 e l s e % something we could f i x ?
246 i f f l g I | | f l gF % MPI used , w i l l break
247 c l e a r MPI ∗ % un l e s s we c l e a r MPITB
248 di sp (’ LAM Start : MPI a l r eady used− c l e a r i n g ’) % must s t a r t over
249 end
250

251 MPI Init ;
252 end
253

254 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
255 % NSLAVES CHECK
256 %−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
257

258 [i n f o a t t r f l a g] = MPI Attr get (MPICOMMWORLD,MPI UNIVERSE SIZE) ;
259 i f i n f o | ˜ f l a g
260 e r r o r (’ LAM Init : a t t r i b u t e MPI UNIVERSE SIZE does not e x i s t ? ’)
261 end
262 i f a t t r<2
263 e r r o r (’ LAM Init : r equ i r ed 2 computers in LAM’)
264 end
265

266 %==
267

268 f unc t i on rp i = r p i s t r (c)

64

269 %RPI STR Ful l LAM SSI RPI s t r i n g g iven i n i t i a l l e t t e r (s)
270 %
271 % rp i = r p i s t r (c)
272 %
273 % c i n i t i a l char (s) o f r p i name : t , l , u , s
274 % rp i f u l l r p i name , one o f : tcp , lamd , usysv , sysv
275 % Use ’ ’ i f c doesn ’ t match to any supported rp i
276 %
277

278 f l a g = narg in˜=1 | | isempty (c) | | ˜ i s c h a r (c) ;
279 i f f l a g
280 re turn
281 end
282

283 c=lower (c (1)) ;
284 r p i s={ ’ tcp ’ , ’ lamd ’ , ’ usysv ’ , ’ sysv ’ , ’ none ’ } ; % ’ none ’ i s s e n t i n e l
285

286 f o r i =1: l ength (r p i s)
287 i f r p i s { i }(1)==c
288 break
289 end
290 end
291

292 i f i<l ength (r p i s)
293 r p i=r p i s { i } ; % normal ca s e s
294 e l s e
295 r p i=’ ’ ; % no way , unknown rp i
296 end

65

References

[1] A. M. Collier, A. C. Hindmarsh, R. Serban, and C.S. Woodward. User Documentation for
KINSOL v2.2.0. Technical Report UCRL-SM-208116, LLNL, 2004.

[2] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker, and C. S.
Woodward. SUNDIALS, suite of nonlinear and differential/algebraic equation solvers. ACM

Trans. Math. Softw., (submitted), 2004.

[3] A. C. Hindmarsh and R. Serban. User Documentation for CVODES v2.1.0. Technical report,
LLNL, 2004. UCRL-SM-208111.

66

